mirror of
				https://github.com/wangyu-/udp2raw.git
				synced 2025-10-31 18:25:35 +08:00 
			
		
		
		
	add aes128cfb, delete unused files
This commit is contained in:
		
							
								
								
									
										20
									
								
								lib/aes-common.h
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										20
									
								
								lib/aes-common.h
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,20 @@ | ||||
| /* | ||||
|  *  this file comes from https://github.com/kokke/tiny-AES128-C | ||||
|  */ | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| #include <stdint.h> | ||||
|  | ||||
|  | ||||
|  | ||||
| void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length); | ||||
| void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length); | ||||
|  | ||||
|  | ||||
| void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv); | ||||
| void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv); | ||||
|  | ||||
|  | ||||
| void AES_CFB_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv); | ||||
| void AES_CFB_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv); | ||||
							
								
								
									
										600
									
								
								lib/aes.cpp
									
									
									
									
									
								
							
							
						
						
									
										600
									
								
								lib/aes.cpp
									
									
									
									
									
								
							| @@ -1,600 +0,0 @@ | ||||
|  | ||||
| /* | ||||
|  *  this file comes from https://github.com/kokke/tiny-AES128-C | ||||
|  */ | ||||
|  | ||||
| /* | ||||
|  | ||||
| This is an implementation of the AES algorithm, specifically ECB and CBC mode. | ||||
| Block size can be chosen in aes.h - available choices are AES128, AES192, AES256. | ||||
|  | ||||
| The implementation is verified against the test vectors in: | ||||
|   National Institute of Standards and Technology Special Publication 800-38A 2001 ED | ||||
|  | ||||
| ECB-AES128 | ||||
| ---------- | ||||
|  | ||||
|   plain-text: | ||||
|     6bc1bee22e409f96e93d7e117393172a | ||||
|     ae2d8a571e03ac9c9eb76fac45af8e51 | ||||
|     30c81c46a35ce411e5fbc1191a0a52ef | ||||
|     f69f2445df4f9b17ad2b417be66c3710 | ||||
|  | ||||
|   key: | ||||
|     2b7e151628aed2a6abf7158809cf4f3c | ||||
|  | ||||
|   resulting cipher | ||||
|     3ad77bb40d7a3660a89ecaf32466ef97  | ||||
|     f5d3d58503b9699de785895a96fdbaaf  | ||||
|     43b1cd7f598ece23881b00e3ed030688  | ||||
|     7b0c785e27e8ad3f8223207104725dd4  | ||||
|  | ||||
|  | ||||
| NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0) | ||||
|         You should pad the end of the string with zeros if this is not the case. | ||||
|         For AES192/256 the block size is proportionally larger. | ||||
|  | ||||
| */ | ||||
|  | ||||
|  | ||||
| /*****************************************************************************/ | ||||
| /* Includes:                                                                 */ | ||||
| /*****************************************************************************/ | ||||
| #include <stdint.h> | ||||
| #include <string.h> // CBC mode, for memset | ||||
| #include "aes.h" | ||||
|  | ||||
| /*****************************************************************************/ | ||||
| /* Defines:                                                                  */ | ||||
| /*****************************************************************************/ | ||||
| // The number of columns comprising a state in AES. This is a constant in AES. Value=4 | ||||
| #define Nb 4 | ||||
| #define BLOCKLEN 16 //Block length in bytes AES is 128b block only | ||||
|  | ||||
| #if defined(AES256) && (AES256 == 1) | ||||
|     #define Nk 8 | ||||
|     #define KEYLEN 32 | ||||
|     #define Nr 14 | ||||
|     #define keyExpSize 240 | ||||
| #elif defined(AES192) && (AES192 == 1) | ||||
|     #define Nk 6 | ||||
|     #define KEYLEN 24 | ||||
|     #define Nr 12 | ||||
|     #define keyExpSize 208 | ||||
| #else | ||||
|     #define Nk 4        // The number of 32 bit words in a key. | ||||
|     #define KEYLEN 16   // Key length in bytes | ||||
|     #define Nr 10       // The number of rounds in AES Cipher. | ||||
|     #define keyExpSize 176 | ||||
| #endif | ||||
|  | ||||
| // jcallan@github points out that declaring Multiply as a function  | ||||
| // reduces code size considerably with the Keil ARM compiler. | ||||
| // See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3 | ||||
| #ifndef MULTIPLY_AS_A_FUNCTION | ||||
|   #define MULTIPLY_AS_A_FUNCTION 0 | ||||
| #endif | ||||
|  | ||||
|  | ||||
| /*****************************************************************************/ | ||||
| /* Private variables:                                                        */ | ||||
| /*****************************************************************************/ | ||||
| // state - array holding the intermediate results during decryption. | ||||
| typedef uint8_t state_t[4][4]; | ||||
| static state_t* state; | ||||
|  | ||||
| // The array that stores the round keys. | ||||
| static uint8_t RoundKey[keyExpSize]; | ||||
|  | ||||
| // The Key input to the AES Program | ||||
| static const uint8_t* Key; | ||||
|  | ||||
| #if defined(CBC) && CBC | ||||
|   // Initial Vector used only for CBC mode | ||||
|   static uint8_t* Iv; | ||||
| #endif | ||||
|  | ||||
| // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM | ||||
| // The numbers below can be computed dynamically trading ROM for RAM -  | ||||
| // This can be useful in (embedded) bootloader applications, where ROM is often limited. | ||||
| static const uint8_t sbox[256] = { | ||||
|   //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F | ||||
|   0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, | ||||
|   0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, | ||||
|   0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, | ||||
|   0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, | ||||
|   0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, | ||||
|   0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, | ||||
|   0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, | ||||
|   0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, | ||||
|   0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, | ||||
|   0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, | ||||
|   0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, | ||||
|   0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, | ||||
|   0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, | ||||
|   0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, | ||||
|   0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, | ||||
|   0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; | ||||
|  | ||||
| static const uint8_t rsbox[256] = { | ||||
|   0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, | ||||
|   0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, | ||||
|   0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, | ||||
|   0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, | ||||
|   0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, | ||||
|   0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, | ||||
|   0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, | ||||
|   0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, | ||||
|   0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, | ||||
|   0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, | ||||
|   0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, | ||||
|   0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, | ||||
|   0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, | ||||
|   0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, | ||||
|   0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, | ||||
|   0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; | ||||
|  | ||||
| // The round constant word array, Rcon[i], contains the values given by  | ||||
| // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) | ||||
| static const uint8_t Rcon[11] = { | ||||
|   0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; | ||||
|  | ||||
| /* | ||||
|  * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES128-C/pull/12), | ||||
|  * that you can remove most of the elements in the Rcon array, because they are unused. | ||||
|  * | ||||
|  * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon | ||||
|  *  | ||||
|  * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),  | ||||
|  *  up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm." | ||||
|  * | ||||
|  * ... which is why the full array below has been 'disabled' below. | ||||
|  */ | ||||
| #if 0 | ||||
| static const uint8_t Rcon[256] = { | ||||
|   0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, | ||||
|   0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, | ||||
|   0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, | ||||
|   0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, | ||||
|   0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, | ||||
|   0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, | ||||
|   0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, | ||||
|   0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, | ||||
|   0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, | ||||
|   0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, | ||||
|   0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, | ||||
|   0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, | ||||
|   0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, | ||||
|   0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, | ||||
|   0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, | ||||
|   0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d }; | ||||
| #endif | ||||
|  | ||||
| /*****************************************************************************/ | ||||
| /* Private functions:                                                        */ | ||||
| /*****************************************************************************/ | ||||
| static uint8_t getSBoxValue(uint8_t num) | ||||
| { | ||||
|   return sbox[num]; | ||||
| } | ||||
|  | ||||
| static uint8_t getSBoxInvert(uint8_t num) | ||||
| { | ||||
|   return rsbox[num]; | ||||
| } | ||||
|  | ||||
| // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.  | ||||
| static void KeyExpansion(void) | ||||
| { | ||||
|   uint32_t i, k; | ||||
|   uint8_t tempa[4]; // Used for the column/row operations | ||||
|    | ||||
|   // The first round key is the key itself. | ||||
|   for (i = 0; i < Nk; ++i) | ||||
|   { | ||||
|     RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; | ||||
|     RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; | ||||
|     RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; | ||||
|     RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; | ||||
|   } | ||||
|  | ||||
|   // All other round keys are found from the previous round keys. | ||||
|   //i == Nk | ||||
|   for (; i < Nb * (Nr + 1); ++i) | ||||
|   { | ||||
|     { | ||||
|       tempa[0]=RoundKey[(i-1) * 4 + 0]; | ||||
|       tempa[1]=RoundKey[(i-1) * 4 + 1]; | ||||
|       tempa[2]=RoundKey[(i-1) * 4 + 2]; | ||||
|       tempa[3]=RoundKey[(i-1) * 4 + 3]; | ||||
|     } | ||||
|  | ||||
|     if (i % Nk == 0) | ||||
|     { | ||||
|       // This function shifts the 4 bytes in a word to the left once. | ||||
|       // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] | ||||
|  | ||||
|       // Function RotWord() | ||||
|       { | ||||
|         k = tempa[0]; | ||||
|         tempa[0] = tempa[1]; | ||||
|         tempa[1] = tempa[2]; | ||||
|         tempa[2] = tempa[3]; | ||||
|         tempa[3] = k; | ||||
|       } | ||||
|  | ||||
|       // SubWord() is a function that takes a four-byte input word and  | ||||
|       // applies the S-box to each of the four bytes to produce an output word. | ||||
|  | ||||
|       // Function Subword() | ||||
|       { | ||||
|         tempa[0] = getSBoxValue(tempa[0]); | ||||
|         tempa[1] = getSBoxValue(tempa[1]); | ||||
|         tempa[2] = getSBoxValue(tempa[2]); | ||||
|         tempa[3] = getSBoxValue(tempa[3]); | ||||
|       } | ||||
|  | ||||
|       tempa[0] =  tempa[0] ^ Rcon[i/Nk]; | ||||
|     } | ||||
| #if defined(AES256) && (AES256 == 1) | ||||
|     if (i % Nk == 4) | ||||
|     { | ||||
|       // Function Subword() | ||||
|       { | ||||
|         tempa[0] = getSBoxValue(tempa[0]); | ||||
|         tempa[1] = getSBoxValue(tempa[1]); | ||||
|         tempa[2] = getSBoxValue(tempa[2]); | ||||
|         tempa[3] = getSBoxValue(tempa[3]); | ||||
|       } | ||||
|     } | ||||
| #endif | ||||
|     RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0]; | ||||
|     RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1]; | ||||
|     RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2]; | ||||
|     RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| // This function adds the round key to state. | ||||
| // The round key is added to the state by an XOR function. | ||||
| static void AddRoundKey(uint8_t round) | ||||
| { | ||||
|   uint8_t i,j; | ||||
|   for (i=0;i<4;++i) | ||||
|   { | ||||
|     for (j = 0; j < 4; ++j) | ||||
|     { | ||||
|       (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j]; | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| // The SubBytes Function Substitutes the values in the | ||||
| // state matrix with values in an S-box. | ||||
| static void SubBytes(void) | ||||
| { | ||||
|   uint8_t i, j; | ||||
|   for (i = 0; i < 4; ++i) | ||||
|   { | ||||
|     for (j = 0; j < 4; ++j) | ||||
|     { | ||||
|       (*state)[j][i] = getSBoxValue((*state)[j][i]); | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| // The ShiftRows() function shifts the rows in the state to the left. | ||||
| // Each row is shifted with different offset. | ||||
| // Offset = Row number. So the first row is not shifted. | ||||
| static void ShiftRows(void) | ||||
| { | ||||
|   uint8_t temp; | ||||
|  | ||||
|   // Rotate first row 1 columns to left   | ||||
|   temp           = (*state)[0][1]; | ||||
|   (*state)[0][1] = (*state)[1][1]; | ||||
|   (*state)[1][1] = (*state)[2][1]; | ||||
|   (*state)[2][1] = (*state)[3][1]; | ||||
|   (*state)[3][1] = temp; | ||||
|  | ||||
|   // Rotate second row 2 columns to left   | ||||
|   temp           = (*state)[0][2]; | ||||
|   (*state)[0][2] = (*state)[2][2]; | ||||
|   (*state)[2][2] = temp; | ||||
|  | ||||
|   temp           = (*state)[1][2]; | ||||
|   (*state)[1][2] = (*state)[3][2]; | ||||
|   (*state)[3][2] = temp; | ||||
|  | ||||
|   // Rotate third row 3 columns to left | ||||
|   temp           = (*state)[0][3]; | ||||
|   (*state)[0][3] = (*state)[3][3]; | ||||
|   (*state)[3][3] = (*state)[2][3]; | ||||
|   (*state)[2][3] = (*state)[1][3]; | ||||
|   (*state)[1][3] = temp; | ||||
| } | ||||
|  | ||||
| static uint8_t xtime(uint8_t x) | ||||
| { | ||||
|   return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); | ||||
| } | ||||
|  | ||||
| // MixColumns function mixes the columns of the state matrix | ||||
| static void MixColumns(void) | ||||
| { | ||||
|   uint8_t i; | ||||
|   uint8_t Tmp,Tm,t; | ||||
|   for (i = 0; i < 4; ++i) | ||||
|   {   | ||||
|     t   = (*state)[i][0]; | ||||
|     Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; | ||||
|     Tm  = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp ; | ||||
|     Tm  = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp ; | ||||
|     Tm  = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp ; | ||||
|     Tm  = (*state)[i][3] ^ t ;              Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp ; | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Multiply is used to multiply numbers in the field GF(2^8) | ||||
| #if MULTIPLY_AS_A_FUNCTION | ||||
| static uint8_t Multiply(uint8_t x, uint8_t y) | ||||
| { | ||||
|   return (((y & 1) * x) ^ | ||||
|        ((y>>1 & 1) * xtime(x)) ^ | ||||
|        ((y>>2 & 1) * xtime(xtime(x))) ^ | ||||
|        ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ | ||||
|        ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); | ||||
|   } | ||||
| #else | ||||
| #define Multiply(x, y)                                \ | ||||
|       (  ((y & 1) * x) ^                              \ | ||||
|       ((y>>1 & 1) * xtime(x)) ^                       \ | ||||
|       ((y>>2 & 1) * xtime(xtime(x))) ^                \ | ||||
|       ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \ | ||||
|       ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \ | ||||
|  | ||||
| #endif | ||||
|  | ||||
| // MixColumns function mixes the columns of the state matrix. | ||||
| // The method used to multiply may be difficult to understand for the inexperienced. | ||||
| // Please use the references to gain more information. | ||||
| static void InvMixColumns(void) | ||||
| { | ||||
|   int i; | ||||
|   uint8_t a, b, c, d; | ||||
|   for (i = 0; i < 4; ++i) | ||||
|   {  | ||||
|     a = (*state)[i][0]; | ||||
|     b = (*state)[i][1]; | ||||
|     c = (*state)[i][2]; | ||||
|     d = (*state)[i][3]; | ||||
|  | ||||
|     (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); | ||||
|     (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); | ||||
|     (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); | ||||
|     (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); | ||||
|   } | ||||
| } | ||||
|  | ||||
|  | ||||
| // The SubBytes Function Substitutes the values in the | ||||
| // state matrix with values in an S-box. | ||||
| static void InvSubBytes(void) | ||||
| { | ||||
|   uint8_t i,j; | ||||
|   for (i = 0; i < 4; ++i) | ||||
|   { | ||||
|     for (j = 0; j < 4; ++j) | ||||
|     { | ||||
|       (*state)[j][i] = getSBoxInvert((*state)[j][i]); | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| static void InvShiftRows(void) | ||||
| { | ||||
|   uint8_t temp; | ||||
|  | ||||
|   // Rotate first row 1 columns to right   | ||||
|   temp = (*state)[3][1]; | ||||
|   (*state)[3][1] = (*state)[2][1]; | ||||
|   (*state)[2][1] = (*state)[1][1]; | ||||
|   (*state)[1][1] = (*state)[0][1]; | ||||
|   (*state)[0][1] = temp; | ||||
|  | ||||
|   // Rotate second row 2 columns to right  | ||||
|   temp = (*state)[0][2]; | ||||
|   (*state)[0][2] = (*state)[2][2]; | ||||
|   (*state)[2][2] = temp; | ||||
|  | ||||
|   temp = (*state)[1][2]; | ||||
|   (*state)[1][2] = (*state)[3][2]; | ||||
|   (*state)[3][2] = temp; | ||||
|  | ||||
|   // Rotate third row 3 columns to right | ||||
|   temp = (*state)[0][3]; | ||||
|   (*state)[0][3] = (*state)[1][3]; | ||||
|   (*state)[1][3] = (*state)[2][3]; | ||||
|   (*state)[2][3] = (*state)[3][3]; | ||||
|   (*state)[3][3] = temp; | ||||
| } | ||||
|  | ||||
|  | ||||
| // Cipher is the main function that encrypts the PlainText. | ||||
| static void Cipher(void) | ||||
| { | ||||
|   uint8_t round = 0; | ||||
|  | ||||
|   // Add the First round key to the state before starting the rounds. | ||||
|   AddRoundKey(0);  | ||||
|    | ||||
|   // There will be Nr rounds. | ||||
|   // The first Nr-1 rounds are identical. | ||||
|   // These Nr-1 rounds are executed in the loop below. | ||||
|   for (round = 1; round < Nr; ++round) | ||||
|   { | ||||
|     SubBytes(); | ||||
|     ShiftRows(); | ||||
|     MixColumns(); | ||||
|     AddRoundKey(round); | ||||
|   } | ||||
|    | ||||
|   // The last round is given below. | ||||
|   // The MixColumns function is not here in the last round. | ||||
|   SubBytes(); | ||||
|   ShiftRows(); | ||||
|   AddRoundKey(Nr); | ||||
| } | ||||
|  | ||||
| static void InvCipher(void) | ||||
| { | ||||
|   uint8_t round=0; | ||||
|  | ||||
|   // Add the First round key to the state before starting the rounds. | ||||
|   AddRoundKey(Nr);  | ||||
|  | ||||
|   // There will be Nr rounds. | ||||
|   // The first Nr-1 rounds are identical. | ||||
|   // These Nr-1 rounds are executed in the loop below. | ||||
|   for (round = (Nr - 1); round > 0; --round) | ||||
|   { | ||||
|     InvShiftRows(); | ||||
|     InvSubBytes(); | ||||
|     AddRoundKey(round); | ||||
|     InvMixColumns(); | ||||
|   } | ||||
|    | ||||
|   // The last round is given below. | ||||
|   // The MixColumns function is not here in the last round. | ||||
|   InvShiftRows(); | ||||
|   InvSubBytes(); | ||||
|   AddRoundKey(0); | ||||
| } | ||||
|  | ||||
|  | ||||
| /*****************************************************************************/ | ||||
| /* Public functions:                                                         */ | ||||
| /*****************************************************************************/ | ||||
| #if defined(ECB) && (ECB == 1) | ||||
|  | ||||
|  | ||||
| void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t* output, const uint32_t length) | ||||
| { | ||||
|   // Copy input to output, and work in-memory on output | ||||
|   memcpy(output, input, length); | ||||
|   state = (state_t*)output; | ||||
|  | ||||
|   Key = key; | ||||
|   KeyExpansion(); | ||||
|  | ||||
|   // The next function call encrypts the PlainText with the Key using AES algorithm. | ||||
|   Cipher(); | ||||
| } | ||||
|  | ||||
| void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length) | ||||
| { | ||||
|   // Copy input to output, and work in-memory on output | ||||
|   memcpy(output, input, length); | ||||
|   state = (state_t*)output; | ||||
|  | ||||
|   // The KeyExpansion routine must be called before encryption. | ||||
|   Key = key; | ||||
|   KeyExpansion(); | ||||
|  | ||||
|   InvCipher(); | ||||
| } | ||||
|  | ||||
|  | ||||
| #endif // #if defined(ECB) && (ECB == 1) | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| #if defined(CBC) && (CBC == 1) | ||||
|  | ||||
|  | ||||
| static void XorWithIv(uint8_t* buf) | ||||
| { | ||||
|   uint8_t i; | ||||
|   for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes! | ||||
|   { | ||||
|     buf[i] ^= Iv[i]; | ||||
|   } | ||||
| } | ||||
|  | ||||
| void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) | ||||
| { | ||||
|   uintptr_t i; | ||||
|   uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */ | ||||
|  | ||||
|   // Skip the key expansion if key is passed as 0 | ||||
|   if (0 != key) | ||||
|   { | ||||
|     Key = key; | ||||
|     KeyExpansion(); | ||||
|   } | ||||
|  | ||||
|   if (iv != 0) | ||||
|   { | ||||
|     Iv = (uint8_t*)iv; | ||||
|   } | ||||
|  | ||||
|   for (i = 0; i < length; i += BLOCKLEN) | ||||
|   { | ||||
|     XorWithIv(input); | ||||
|     memcpy(output, input, BLOCKLEN); | ||||
|     state = (state_t*)output; | ||||
|     Cipher(); | ||||
|     Iv = output; | ||||
|     input += BLOCKLEN; | ||||
|     output += BLOCKLEN; | ||||
|     //printf("Step %d - %d", i/16, i); | ||||
|   } | ||||
|  | ||||
|   if (extra) | ||||
|   { | ||||
|     memcpy(output, input, extra); | ||||
|     state = (state_t*)output; | ||||
|     Cipher(); | ||||
|   } | ||||
| } | ||||
|  | ||||
| void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) | ||||
| { | ||||
|   uintptr_t i; | ||||
|   uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */ | ||||
|  | ||||
|   // Skip the key expansion if key is passed as 0 | ||||
|   if (0 != key) | ||||
|   { | ||||
|     Key = key; | ||||
|     KeyExpansion(); | ||||
|   } | ||||
|  | ||||
|   // If iv is passed as 0, we continue to encrypt without re-setting the Iv | ||||
|   if (iv != 0) | ||||
|   { | ||||
|     Iv = (uint8_t*)iv; | ||||
|   } | ||||
|  | ||||
|   for (i = 0; i < length; i += BLOCKLEN) | ||||
|   { | ||||
|     memcpy(output, input, BLOCKLEN); | ||||
|     state = (state_t*)output; | ||||
|     InvCipher(); | ||||
|     XorWithIv(output); | ||||
|     Iv = input; | ||||
|     input += BLOCKLEN; | ||||
|     output += BLOCKLEN; | ||||
|   } | ||||
|  | ||||
|   if (extra) | ||||
|   { | ||||
|     memcpy(output, input, extra); | ||||
|     state = (state_t*)output; | ||||
|     InvCipher(); | ||||
|   } | ||||
| } | ||||
|  | ||||
| #endif // #if defined(CBC) && (CBC == 1) | ||||
							
								
								
									
										45
									
								
								lib/aes.h
									
									
									
									
									
								
							
							
						
						
									
										45
									
								
								lib/aes.h
									
									
									
									
									
								
							| @@ -1,45 +0,0 @@ | ||||
| /* | ||||
|  *  this file comes from https://github.com/kokke/tiny-AES128-C | ||||
|  */ | ||||
|  | ||||
| #ifndef UDP2RAW_AES_H_ | ||||
| #define UDP2RAW_AES_H_ | ||||
|  | ||||
| #include <stdint.h> | ||||
|  | ||||
|  | ||||
| // #define the macros below to 1/0 to enable/disable the mode of operation. | ||||
| // | ||||
| // CBC enables AES encryption in CBC-mode of operation. | ||||
| // ECB enables the basic ECB 16-byte block algorithm. Both can be enabled simultaneously. | ||||
|  | ||||
| // The #ifndef-guard allows it to be configured before #include'ing or at compile time. | ||||
| #ifndef CBC | ||||
|   #define CBC 1 | ||||
| #endif | ||||
|  | ||||
| #ifndef ECB | ||||
|   #define ECB 1 | ||||
| #endif | ||||
|  | ||||
| #define AES128 1 | ||||
| //#define AES192 1 | ||||
| //#define AES256 1 | ||||
|  | ||||
| #if defined(ECB) && (ECB == 1) | ||||
|  | ||||
| void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length); | ||||
| void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length); | ||||
|  | ||||
| #endif // #if defined(ECB) && (ECB == !) | ||||
|  | ||||
|  | ||||
| #if defined(CBC) && (CBC == 1) | ||||
|  | ||||
| void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv); | ||||
| void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv); | ||||
|  | ||||
| #endif // #if defined(CBC) && (CBC == 1) | ||||
|  | ||||
|  | ||||
| #endif //_AES_H_ | ||||
| @@ -37,6 +37,7 @@ | ||||
| ////////modification begin | ||||
| #define POLARSSL_AES_ROM_TABLES | ||||
| #define POLARSSL_CIPHER_MODE_CBC | ||||
| #define POLARSSL_CIPHER_MODE_CFB | ||||
| //#define POLARSSL_SELF_TEST | ||||
| #define polarssl_printf printf | ||||
| ///////add end | ||||
|   | ||||
| @@ -1,6 +1,7 @@ | ||||
| #include "aes.h" | ||||
| #include <stdio.h> | ||||
| #include <stdlib.h> | ||||
| #include <assert.h> | ||||
|  | ||||
| #if defined(AES256) && (AES256 == 1) | ||||
| #define AES_KEYSIZE 256 | ||||
| @@ -25,32 +26,64 @@ void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, | ||||
| void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) | ||||
| { | ||||
| 	static aes_context ctx; | ||||
| 	static int done=0; | ||||
| 	if(done==0) | ||||
| 	{ | ||||
| 		aes_init( &ctx); | ||||
| 		done=1; | ||||
| 	} | ||||
|  | ||||
| 	char tmp_iv[16]; | ||||
| 	if(key!=0) aes_setkey_enc(&ctx,key,AES_KEYSIZE); | ||||
| 	if(key!=0) | ||||
| 	{ | ||||
| 		aes_init( &ctx); | ||||
| 		aes_setkey_enc(&ctx,key,AES_KEYSIZE); | ||||
| 	} | ||||
| 	memcpy(tmp_iv,iv,16); | ||||
| 	aes_crypt_cbc( &ctx, AES_ENCRYPT, length, (unsigned char* )tmp_iv, (const unsigned char*)input,(unsigned char*) output ); | ||||
| 	int ret=aes_crypt_cbc( &ctx, AES_ENCRYPT, length, (unsigned char* )tmp_iv, (const unsigned char*)input,(unsigned char*) output ); | ||||
| 	assert(ret==0); | ||||
| 	return ; | ||||
| } | ||||
| void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) | ||||
| { | ||||
| 	static aes_context ctx; | ||||
| 	static int done=0; | ||||
| 	if(done==0) | ||||
| 	{ | ||||
| 		aes_init( &ctx); | ||||
| 		done=1; | ||||
| 	} | ||||
|  | ||||
| 	char tmp_iv[16]; | ||||
| 	if(key!=0) aes_setkey_dec(&ctx,key,AES_KEYSIZE); | ||||
| 	if(key!=0) | ||||
| 	{ | ||||
| 		aes_init( &ctx); | ||||
| 		aes_setkey_dec(&ctx,key,AES_KEYSIZE); | ||||
| 	} | ||||
| 	memcpy(tmp_iv,iv,16); | ||||
| 	aes_crypt_cbc( &ctx,AES_DECRYPT, length, (unsigned char*)tmp_iv, (const unsigned char*)input, (unsigned char*) output ); | ||||
| 	int ret=aes_crypt_cbc( &ctx,AES_DECRYPT, length, (unsigned char*)tmp_iv, (const unsigned char*)input, (unsigned char*) output ); | ||||
| 	assert(ret==0); | ||||
| } | ||||
|  | ||||
| void AES_CFB_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) | ||||
| { | ||||
| 	static aes_context ctx; | ||||
|  | ||||
| 	char tmp_iv[16]; | ||||
| 	if(key!=0) | ||||
| 	{ | ||||
| 		aes_init( &ctx); | ||||
| 		aes_setkey_enc(&ctx,key,AES_KEYSIZE); | ||||
| 	} | ||||
| 	memcpy(tmp_iv,iv,16); | ||||
| 	size_t offset=0; | ||||
| 	int ret=aes_crypt_cfb128( &ctx, AES_ENCRYPT, length,&offset, (unsigned char* )tmp_iv, (const unsigned char*)input,(unsigned char*) output ); | ||||
| 	assert(ret==0); | ||||
| 	return ; | ||||
| } | ||||
| void AES_CFB_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) | ||||
| { | ||||
| 	static aes_context ctx; | ||||
|  | ||||
| 	char tmp_iv[16]; | ||||
| 	if(key!=0) | ||||
| 	{ | ||||
| 		aes_init( &ctx); | ||||
| 		aes_setkey_enc(&ctx,key,AES_KEYSIZE);// its aes_setkey_enc again, no typo | ||||
| 	} | ||||
| 	memcpy(tmp_iv,iv,16); | ||||
| 	size_t offset=0; | ||||
| 	int ret=aes_crypt_cfb128( &ctx,AES_DECRYPT, length,&offset, (unsigned char*)tmp_iv, (const unsigned char*)input, (unsigned char*) output ); | ||||
| 	assert(ret==0); | ||||
| 	return; | ||||
| } | ||||
|  | ||||
|  | ||||
|   | ||||
							
								
								
									
										345
									
								
								lib/sha1.c
									
									
									
									
									
								
							
							
						
						
									
										345
									
								
								lib/sha1.c
									
									
									
									
									
								
							| @@ -1,345 +0,0 @@ | ||||
| /* | ||||
|  * This file is adapted from PolarSSL 1.3.19 (GPL) | ||||
|  */ | ||||
|  | ||||
| /* | ||||
|  *  FIPS-180-1 compliant SHA-1 implementation | ||||
|  * | ||||
|  *  Copyright (C) 2006-2014, ARM Limited, All Rights Reserved | ||||
|  * | ||||
|  *  This file is part of mbed TLS (https://tls.mbed.org) | ||||
|  * | ||||
|  *  This program is free software; you can redistribute it and/or modify | ||||
|  *  it under the terms of the GNU General Public License as published by | ||||
|  *  the Free Software Foundation; either version 2 of the License, or | ||||
|  *  (at your option) any later version. | ||||
|  * | ||||
|  *  This program is distributed in the hope that it will be useful, | ||||
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  *  GNU General Public License for more details. | ||||
|  * | ||||
|  *  You should have received a copy of the GNU General Public License along | ||||
|  *  with this program; if not, write to the Free Software Foundation, Inc., | ||||
|  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  */ | ||||
| /* | ||||
|  *  The SHA-1 standard was published by NIST in 1993. | ||||
|  * | ||||
|  *  http://www.itl.nist.gov/fipspubs/fip180-1.htm | ||||
|  */ | ||||
|  | ||||
| #include <string.h> | ||||
| #include <stddef.h> | ||||
| #include <stdint.h> | ||||
|  | ||||
| typedef struct | ||||
| { | ||||
|     uint32_t total[2];          /*!< number of bytes processed  */ | ||||
|     uint32_t state[5];          /*!< intermediate digest state  */ | ||||
|     unsigned char buffer[64];   /*!< data block being processed */ | ||||
| } | ||||
| sha1_context; | ||||
|  | ||||
| /* Implementation that should never be optimized out by the compiler */ | ||||
| static void polarssl_zeroize( void *v, size_t n ) { | ||||
|     volatile unsigned char *p = (unsigned char *) v; while( n-- ) *p++ = 0; | ||||
| } | ||||
|  | ||||
| /* | ||||
|  * 32-bit integer manipulation macros (big endian) | ||||
|  */ | ||||
| #ifndef GET_UINT32_BE | ||||
| #define GET_UINT32_BE(n,b,i)                            \ | ||||
| {                                                       \ | ||||
|     (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \ | ||||
|         | ( (uint32_t) (b)[(i) + 1] << 16 )             \ | ||||
|         | ( (uint32_t) (b)[(i) + 2] <<  8 )             \ | ||||
|         | ( (uint32_t) (b)[(i) + 3]       );            \ | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #ifndef PUT_UINT32_BE | ||||
| #define PUT_UINT32_BE(n,b,i)                            \ | ||||
| {                                                       \ | ||||
|     (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \ | ||||
|     (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \ | ||||
|     (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \ | ||||
|     (b)[(i) + 3] = (unsigned char) ( (n)       );       \ | ||||
| } | ||||
| #endif | ||||
|  | ||||
| void sha1_init( sha1_context *ctx ) | ||||
| { | ||||
|     memset( ctx, 0, sizeof( sha1_context ) ); | ||||
| } | ||||
|  | ||||
| void sha1_free( sha1_context *ctx ) | ||||
| { | ||||
|     if( ctx == NULL ) | ||||
|         return; | ||||
|  | ||||
|     polarssl_zeroize( ctx, sizeof( sha1_context ) ); | ||||
| } | ||||
|  | ||||
| /* | ||||
|  * SHA-1 context setup | ||||
|  */ | ||||
| void sha1_starts( sha1_context *ctx ) | ||||
| { | ||||
|     ctx->total[0] = 0; | ||||
|     ctx->total[1] = 0; | ||||
|  | ||||
|     ctx->state[0] = 0x67452301; | ||||
|     ctx->state[1] = 0xEFCDAB89; | ||||
|     ctx->state[2] = 0x98BADCFE; | ||||
|     ctx->state[3] = 0x10325476; | ||||
|     ctx->state[4] = 0xC3D2E1F0; | ||||
| } | ||||
|  | ||||
| void sha1_process( sha1_context *ctx, const unsigned char data[64] ) | ||||
| { | ||||
|     uint32_t temp, W[16], A, B, C, D, E; | ||||
|  | ||||
|     GET_UINT32_BE( W[ 0], data,  0 ); | ||||
|     GET_UINT32_BE( W[ 1], data,  4 ); | ||||
|     GET_UINT32_BE( W[ 2], data,  8 ); | ||||
|     GET_UINT32_BE( W[ 3], data, 12 ); | ||||
|     GET_UINT32_BE( W[ 4], data, 16 ); | ||||
|     GET_UINT32_BE( W[ 5], data, 20 ); | ||||
|     GET_UINT32_BE( W[ 6], data, 24 ); | ||||
|     GET_UINT32_BE( W[ 7], data, 28 ); | ||||
|     GET_UINT32_BE( W[ 8], data, 32 ); | ||||
|     GET_UINT32_BE( W[ 9], data, 36 ); | ||||
|     GET_UINT32_BE( W[10], data, 40 ); | ||||
|     GET_UINT32_BE( W[11], data, 44 ); | ||||
|     GET_UINT32_BE( W[12], data, 48 ); | ||||
|     GET_UINT32_BE( W[13], data, 52 ); | ||||
|     GET_UINT32_BE( W[14], data, 56 ); | ||||
|     GET_UINT32_BE( W[15], data, 60 ); | ||||
|  | ||||
| #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n))) | ||||
|  | ||||
| #define R(t)                                            \ | ||||
| (                                                       \ | ||||
|     temp = W[( t -  3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \ | ||||
|            W[( t - 14 ) & 0x0F] ^ W[  t       & 0x0F],  \ | ||||
|     ( W[t & 0x0F] = S(temp,1) )                         \ | ||||
| ) | ||||
|  | ||||
| #define P(a,b,c,d,e,x)                                  \ | ||||
| {                                                       \ | ||||
|     e += S(a,5) + F(b,c,d) + K + x; b = S(b,30);        \ | ||||
| } | ||||
|  | ||||
|     A = ctx->state[0]; | ||||
|     B = ctx->state[1]; | ||||
|     C = ctx->state[2]; | ||||
|     D = ctx->state[3]; | ||||
|     E = ctx->state[4]; | ||||
|  | ||||
| #define F(x,y,z) (z ^ (x & (y ^ z))) | ||||
| #define K 0x5A827999 | ||||
|  | ||||
|     P( A, B, C, D, E, W[0]  ); | ||||
|     P( E, A, B, C, D, W[1]  ); | ||||
|     P( D, E, A, B, C, W[2]  ); | ||||
|     P( C, D, E, A, B, W[3]  ); | ||||
|     P( B, C, D, E, A, W[4]  ); | ||||
|     P( A, B, C, D, E, W[5]  ); | ||||
|     P( E, A, B, C, D, W[6]  ); | ||||
|     P( D, E, A, B, C, W[7]  ); | ||||
|     P( C, D, E, A, B, W[8]  ); | ||||
|     P( B, C, D, E, A, W[9]  ); | ||||
|     P( A, B, C, D, E, W[10] ); | ||||
|     P( E, A, B, C, D, W[11] ); | ||||
|     P( D, E, A, B, C, W[12] ); | ||||
|     P( C, D, E, A, B, W[13] ); | ||||
|     P( B, C, D, E, A, W[14] ); | ||||
|     P( A, B, C, D, E, W[15] ); | ||||
|     P( E, A, B, C, D, R(16) ); | ||||
|     P( D, E, A, B, C, R(17) ); | ||||
|     P( C, D, E, A, B, R(18) ); | ||||
|     P( B, C, D, E, A, R(19) ); | ||||
|  | ||||
| #undef K | ||||
| #undef F | ||||
|  | ||||
| #define F(x,y,z) (x ^ y ^ z) | ||||
| #define K 0x6ED9EBA1 | ||||
|  | ||||
|     P( A, B, C, D, E, R(20) ); | ||||
|     P( E, A, B, C, D, R(21) ); | ||||
|     P( D, E, A, B, C, R(22) ); | ||||
|     P( C, D, E, A, B, R(23) ); | ||||
|     P( B, C, D, E, A, R(24) ); | ||||
|     P( A, B, C, D, E, R(25) ); | ||||
|     P( E, A, B, C, D, R(26) ); | ||||
|     P( D, E, A, B, C, R(27) ); | ||||
|     P( C, D, E, A, B, R(28) ); | ||||
|     P( B, C, D, E, A, R(29) ); | ||||
|     P( A, B, C, D, E, R(30) ); | ||||
|     P( E, A, B, C, D, R(31) ); | ||||
|     P( D, E, A, B, C, R(32) ); | ||||
|     P( C, D, E, A, B, R(33) ); | ||||
|     P( B, C, D, E, A, R(34) ); | ||||
|     P( A, B, C, D, E, R(35) ); | ||||
|     P( E, A, B, C, D, R(36) ); | ||||
|     P( D, E, A, B, C, R(37) ); | ||||
|     P( C, D, E, A, B, R(38) ); | ||||
|     P( B, C, D, E, A, R(39) ); | ||||
|  | ||||
| #undef K | ||||
| #undef F | ||||
|  | ||||
| #define F(x,y,z) ((x & y) | (z & (x | y))) | ||||
| #define K 0x8F1BBCDC | ||||
|  | ||||
|     P( A, B, C, D, E, R(40) ); | ||||
|     P( E, A, B, C, D, R(41) ); | ||||
|     P( D, E, A, B, C, R(42) ); | ||||
|     P( C, D, E, A, B, R(43) ); | ||||
|     P( B, C, D, E, A, R(44) ); | ||||
|     P( A, B, C, D, E, R(45) ); | ||||
|     P( E, A, B, C, D, R(46) ); | ||||
|     P( D, E, A, B, C, R(47) ); | ||||
|     P( C, D, E, A, B, R(48) ); | ||||
|     P( B, C, D, E, A, R(49) ); | ||||
|     P( A, B, C, D, E, R(50) ); | ||||
|     P( E, A, B, C, D, R(51) ); | ||||
|     P( D, E, A, B, C, R(52) ); | ||||
|     P( C, D, E, A, B, R(53) ); | ||||
|     P( B, C, D, E, A, R(54) ); | ||||
|     P( A, B, C, D, E, R(55) ); | ||||
|     P( E, A, B, C, D, R(56) ); | ||||
|     P( D, E, A, B, C, R(57) ); | ||||
|     P( C, D, E, A, B, R(58) ); | ||||
|     P( B, C, D, E, A, R(59) ); | ||||
|  | ||||
| #undef K | ||||
| #undef F | ||||
|  | ||||
| #define F(x,y,z) (x ^ y ^ z) | ||||
| #define K 0xCA62C1D6 | ||||
|  | ||||
|     P( A, B, C, D, E, R(60) ); | ||||
|     P( E, A, B, C, D, R(61) ); | ||||
|     P( D, E, A, B, C, R(62) ); | ||||
|     P( C, D, E, A, B, R(63) ); | ||||
|     P( B, C, D, E, A, R(64) ); | ||||
|     P( A, B, C, D, E, R(65) ); | ||||
|     P( E, A, B, C, D, R(66) ); | ||||
|     P( D, E, A, B, C, R(67) ); | ||||
|     P( C, D, E, A, B, R(68) ); | ||||
|     P( B, C, D, E, A, R(69) ); | ||||
|     P( A, B, C, D, E, R(70) ); | ||||
|     P( E, A, B, C, D, R(71) ); | ||||
|     P( D, E, A, B, C, R(72) ); | ||||
|     P( C, D, E, A, B, R(73) ); | ||||
|     P( B, C, D, E, A, R(74) ); | ||||
|     P( A, B, C, D, E, R(75) ); | ||||
|     P( E, A, B, C, D, R(76) ); | ||||
|     P( D, E, A, B, C, R(77) ); | ||||
|     P( C, D, E, A, B, R(78) ); | ||||
|     P( B, C, D, E, A, R(79) ); | ||||
|  | ||||
| #undef K | ||||
| #undef F | ||||
|  | ||||
|     ctx->state[0] += A; | ||||
|     ctx->state[1] += B; | ||||
|     ctx->state[2] += C; | ||||
|     ctx->state[3] += D; | ||||
|     ctx->state[4] += E; | ||||
| } | ||||
|  | ||||
| /* | ||||
|  * SHA-1 process buffer | ||||
|  */ | ||||
| void sha1_update( sha1_context *ctx, const unsigned char *input, size_t ilen ) | ||||
| { | ||||
|     size_t fill; | ||||
|     uint32_t left; | ||||
|  | ||||
|     if( ilen == 0 ) | ||||
|         return; | ||||
|  | ||||
|     left = ctx->total[0] & 0x3F; | ||||
|     fill = 64 - left; | ||||
|  | ||||
|     ctx->total[0] += (uint32_t) ilen; | ||||
|     ctx->total[0] &= 0xFFFFFFFF; | ||||
|  | ||||
|     if( ctx->total[0] < (uint32_t) ilen ) | ||||
|         ctx->total[1]++; | ||||
|  | ||||
|     if( left && ilen >= fill ) | ||||
|     { | ||||
|         memcpy( (void *) (ctx->buffer + left), input, fill ); | ||||
|         sha1_process( ctx, ctx->buffer ); | ||||
|         input += fill; | ||||
|         ilen  -= fill; | ||||
|         left = 0; | ||||
|     } | ||||
|  | ||||
|     while( ilen >= 64 ) | ||||
|     { | ||||
|         sha1_process( ctx, input ); | ||||
|         input += 64; | ||||
|         ilen  -= 64; | ||||
|     } | ||||
|  | ||||
|     if( ilen > 0 ) | ||||
|         memcpy( (void *) (ctx->buffer + left), input, ilen ); | ||||
| } | ||||
|  | ||||
| static const unsigned char sha1_padding[64] = | ||||
| { | ||||
|  0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||||
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||||
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||||
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | ||||
| }; | ||||
|  | ||||
| /* | ||||
|  * SHA-1 final digest | ||||
|  */ | ||||
| void sha1_finish( sha1_context *ctx, unsigned char output[20] ) | ||||
| { | ||||
|     uint32_t last, padn; | ||||
|     uint32_t high, low; | ||||
|     unsigned char msglen[8]; | ||||
|  | ||||
|     high = ( ctx->total[0] >> 29 ) | ||||
|          | ( ctx->total[1] <<  3 ); | ||||
|     low  = ( ctx->total[0] <<  3 ); | ||||
|  | ||||
|     PUT_UINT32_BE( high, msglen, 0 ); | ||||
|     PUT_UINT32_BE( low,  msglen, 4 ); | ||||
|  | ||||
|     last = ctx->total[0] & 0x3F; | ||||
|     padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); | ||||
|  | ||||
|     sha1_update( ctx, sha1_padding, padn ); | ||||
|     sha1_update( ctx, msglen, 8 ); | ||||
|  | ||||
|     PUT_UINT32_BE( ctx->state[0], output,  0 ); | ||||
|     PUT_UINT32_BE( ctx->state[1], output,  4 ); | ||||
|     PUT_UINT32_BE( ctx->state[2], output,  8 ); | ||||
|     PUT_UINT32_BE( ctx->state[3], output, 12 ); | ||||
|     PUT_UINT32_BE( ctx->state[4], output, 16 ); | ||||
| } | ||||
|  | ||||
| /* | ||||
|  * output = SHA-1( input buffer ) | ||||
|  */ | ||||
| void sha1( const unsigned char *input, size_t ilen, unsigned char output[20] ) | ||||
| { | ||||
|     sha1_context ctx; | ||||
|  | ||||
|     sha1_init( &ctx ); | ||||
|     sha1_starts( &ctx ); | ||||
|     sha1_update( &ctx, input, ilen ); | ||||
|     sha1_finish( &ctx, output ); | ||||
|     sha1_free( &ctx ); | ||||
| } | ||||
		Reference in New Issue
	
	Block a user