mirror of
https://github.com/wangyu-/UDPspeeder.git
synced 2025-01-18 22:09:35 +08:00
438 lines
12 KiB
C++
438 lines
12 KiB
C++
/*
|
|
* fec_manager.h
|
|
*
|
|
* Created on: Sep 27, 2017
|
|
* Author: root
|
|
*/
|
|
|
|
#ifndef FEC_MANAGER_H_
|
|
#define FEC_MANAGER_H_
|
|
|
|
#include "common.h"
|
|
#include "log.h"
|
|
#include "lib/rs.h"
|
|
|
|
const int max_blob_packet_num = 30000; // how many packet can be contain in a blob_t ,can be set very large
|
|
const u32_t anti_replay_buff_size = 30000; // can be set very large
|
|
|
|
const int max_fec_packet_num = 255; // this is the limitation of the rs lib
|
|
extern u32_t fec_buff_num;
|
|
|
|
const int rs_str_len = max_fec_packet_num * 10 + 100;
|
|
extern int header_overhead;
|
|
extern int debug_fec_enc;
|
|
extern int debug_fec_dec;
|
|
|
|
struct fec_parameter_t {
|
|
int version = 0;
|
|
int mtu = default_mtu;
|
|
int queue_len = 200;
|
|
int timeout = 8 * 1000;
|
|
int mode = 0;
|
|
|
|
int rs_cnt = 0;
|
|
struct rs_parameter_t // parameters for reed solomon
|
|
{
|
|
unsigned char x; // AKA fec_data_num (x should be same as <index of rs_par>+1 at the moment)
|
|
unsigned char y; // fec_redundant_num
|
|
} rs_par[max_fec_packet_num + 10];
|
|
|
|
int rs_from_str(char *s) // todo inefficient
|
|
{
|
|
vector<string> str_vec = string_to_vec(s, ",");
|
|
if (str_vec.size() < 1) {
|
|
mylog(log_warn, "failed to parse [%s]\n", s);
|
|
return -1;
|
|
}
|
|
vector<rs_parameter_t> par_vec;
|
|
for (int i = 0; i < (int)str_vec.size(); i++) {
|
|
rs_parameter_t tmp_par;
|
|
string &tmp_str = str_vec[i];
|
|
int x, y;
|
|
if (sscanf((char *)tmp_str.c_str(), "%d:%d", &x, &y) != 2) {
|
|
mylog(log_warn, "failed to parse [%s]\n", tmp_str.c_str());
|
|
return -1;
|
|
}
|
|
if (x < 1 || y < 0 || x + y > max_fec_packet_num) {
|
|
mylog(log_warn, "invaild value x=%d y=%d, x should >=1, y should >=0, x +y should <%d\n", x, y, max_fec_packet_num);
|
|
return -1;
|
|
}
|
|
tmp_par.x = x;
|
|
tmp_par.y = y;
|
|
par_vec.push_back(tmp_par);
|
|
}
|
|
assert(par_vec.size() == str_vec.size());
|
|
|
|
int found_problem = 0;
|
|
for (int i = 1; i < (int)par_vec.size(); i++) {
|
|
if (par_vec[i].x <= par_vec[i - 1].x) {
|
|
mylog(log_warn, "error in [%s], x in x:y should be in ascend order\n", s);
|
|
return -1;
|
|
}
|
|
int now_x = par_vec[i].x;
|
|
int now_y = par_vec[i].y;
|
|
int pre_x = par_vec[i - 1].x;
|
|
int pre_y = par_vec[i - 1].y;
|
|
|
|
double now_ratio = double(par_vec[i].y) / par_vec[i].x;
|
|
double pre_ratio = double(par_vec[i - 1].y) / par_vec[i - 1].x;
|
|
|
|
if (pre_ratio + 0.0001 < now_ratio) {
|
|
if (found_problem == 0) {
|
|
mylog(log_warn, "possible problems: %d/%d<%d/%d", pre_y, pre_x, now_y, now_x);
|
|
found_problem = 1;
|
|
} else {
|
|
log_bare(log_warn, ", %d/%d<%d/%d", pre_y, pre_x, now_y, now_x);
|
|
}
|
|
}
|
|
}
|
|
if (found_problem) {
|
|
log_bare(log_warn, " in %s\n", s);
|
|
}
|
|
|
|
{ // special treatment for first parameter
|
|
int x = par_vec[0].x;
|
|
int y = par_vec[0].y;
|
|
for (int i = 1; i <= x; i++) {
|
|
rs_par[i - 1].x = i;
|
|
rs_par[i - 1].y = y;
|
|
}
|
|
}
|
|
|
|
for (int i = 1; i < (int)par_vec.size(); i++) {
|
|
int now_x = par_vec[i].x;
|
|
int now_y = par_vec[i].y;
|
|
int pre_x = par_vec[i - 1].x;
|
|
int pre_y = par_vec[i - 1].y;
|
|
rs_par[now_x - 1].x = now_x;
|
|
rs_par[now_x - 1].y = now_y;
|
|
|
|
double now_ratio = double(par_vec[i].y) / par_vec[i].x;
|
|
double pre_ratio = double(par_vec[i - 1].y) / par_vec[i - 1].x;
|
|
|
|
// double k= double(now_y-pre_y)/double(now_x-pre_x);
|
|
for (int j = pre_x + 1; j <= now_x - 1; j++) {
|
|
int in_x = j;
|
|
|
|
//////// int in_y= double(pre_y) + double(in_x-pre_x)*k+ 0.9999;// round to upper
|
|
|
|
double distance = now_x - pre_x;
|
|
/////// double in_ratio=pre_ratio*(1.0-(in_x-pre_x)/distance) + now_ratio *(1.0- (now_x-in_x)/distance);
|
|
////// int in_y= in_x*in_ratio + 0.9999;
|
|
int in_y = pre_y + (now_y - pre_y) * (in_x - pre_x) / distance + 0.9999;
|
|
|
|
if (in_x + in_y > max_fec_packet_num) {
|
|
in_y = max_fec_packet_num - in_x;
|
|
assert(in_y >= 0 && in_y <= max_fec_packet_num);
|
|
}
|
|
|
|
rs_par[in_x - 1].x = in_x;
|
|
rs_par[in_x - 1].y = in_y;
|
|
}
|
|
}
|
|
rs_cnt = par_vec[par_vec.size() - 1].x;
|
|
|
|
return 0;
|
|
}
|
|
|
|
char *rs_to_str() // todo inefficient
|
|
{
|
|
static char res[rs_str_len];
|
|
string tmp_string;
|
|
char tmp_buf[100];
|
|
assert(rs_cnt >= 1);
|
|
for (int i = 0; i < rs_cnt; i++) {
|
|
sprintf(tmp_buf, "%d:%d", int(rs_par[i].x), int(rs_par[i].y));
|
|
if (i != 0)
|
|
tmp_string += ",";
|
|
tmp_string += tmp_buf;
|
|
}
|
|
strcpy(res, tmp_string.c_str());
|
|
return res;
|
|
}
|
|
|
|
rs_parameter_t get_tail() {
|
|
assert(rs_cnt >= 1);
|
|
return rs_par[rs_cnt - 1];
|
|
}
|
|
|
|
int clone(fec_parameter_t &other) {
|
|
version = other.version;
|
|
mtu = other.mtu;
|
|
queue_len = other.queue_len;
|
|
timeout = other.timeout;
|
|
mode = other.mode;
|
|
|
|
assert(other.rs_cnt >= 1);
|
|
rs_cnt = other.rs_cnt;
|
|
memcpy(rs_par, other.rs_par, sizeof(rs_parameter_t) * rs_cnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int copy_fec(fec_parameter_t &other) {
|
|
assert(other.rs_cnt >= 1);
|
|
rs_cnt = other.rs_cnt;
|
|
memcpy(rs_par, other.rs_par, sizeof(rs_parameter_t) * rs_cnt);
|
|
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
extern fec_parameter_t g_fec_par;
|
|
// extern int dynamic_update_fec;
|
|
|
|
const int anti_replay_timeout = 120 * 1000; // 120s
|
|
|
|
struct anti_replay_t {
|
|
struct info_t {
|
|
my_time_t my_time;
|
|
int index;
|
|
};
|
|
|
|
u64_t replay_buffer[anti_replay_buff_size];
|
|
unordered_map<u32_t, info_t> mp;
|
|
int index;
|
|
anti_replay_t() {
|
|
clear();
|
|
}
|
|
int clear() {
|
|
memset(replay_buffer, -1, sizeof(replay_buffer));
|
|
mp.clear();
|
|
mp.rehash(anti_replay_buff_size * 3);
|
|
index = 0;
|
|
return 0;
|
|
}
|
|
void set_invaild(u32_t seq) {
|
|
if (is_vaild(seq) == 0) {
|
|
mylog(log_trace, "seq %u exist\n", seq);
|
|
// assert(mp.find(seq)!=mp.end());
|
|
// mp[seq].my_time=get_current_time_rough();
|
|
return;
|
|
}
|
|
if (replay_buffer[index] != u64_t(i64_t(-1))) {
|
|
assert(mp.find(replay_buffer[index]) != mp.end());
|
|
mp.erase(replay_buffer[index]);
|
|
}
|
|
replay_buffer[index] = seq;
|
|
assert(mp.find(seq) == mp.end());
|
|
mp[seq].my_time = get_current_time();
|
|
mp[seq].index = index;
|
|
index++;
|
|
if (index == int(anti_replay_buff_size)) index = 0;
|
|
}
|
|
int is_vaild(u32_t seq) {
|
|
if (mp.find(seq) == mp.end()) return 1;
|
|
|
|
if (get_current_time() - mp[seq].my_time > anti_replay_timeout) {
|
|
replay_buffer[mp[seq].index] = u64_t(i64_t(-1));
|
|
mp.erase(seq);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
struct blob_encode_t {
|
|
char input_buf[(max_fec_packet_num + 5) * buf_len];
|
|
int current_len;
|
|
int counter;
|
|
|
|
char *output_buf[max_fec_packet_num + 100];
|
|
|
|
blob_encode_t();
|
|
|
|
int clear();
|
|
|
|
int get_num();
|
|
int get_shard_len(int n);
|
|
int get_shard_len(int n, int next_packet_len);
|
|
|
|
int input(char *s, int len); // len=use len=0 for second and following packet
|
|
int output(int n, char **&s_arr, int &len);
|
|
};
|
|
|
|
struct blob_decode_t {
|
|
char input_buf[(max_fec_packet_num + 5) * buf_len];
|
|
int current_len;
|
|
int last_len;
|
|
int counter;
|
|
|
|
char *output_buf[max_blob_packet_num + 100];
|
|
int output_len[max_blob_packet_num + 100];
|
|
|
|
blob_decode_t();
|
|
int clear();
|
|
int input(char *input, int len);
|
|
int output(int &n, char **&output, int *&len_arr);
|
|
};
|
|
|
|
class fec_encode_manager_t : not_copy_able_t {
|
|
private:
|
|
u32_t seq;
|
|
|
|
// int fec_mode;
|
|
// int fec_data_num,fec_redundant_num;
|
|
// int fec_mtu;
|
|
// int fec_queue_len;
|
|
// int fec_timeout;
|
|
fec_parameter_t fec_par;
|
|
|
|
my_time_t first_packet_time;
|
|
my_time_t first_packet_time_for_output;
|
|
|
|
blob_encode_t blob_encode;
|
|
char input_buf[max_fec_packet_num + 5][buf_len];
|
|
int input_len[max_fec_packet_num + 100];
|
|
|
|
char *output_buf[max_fec_packet_num + 100];
|
|
int output_len[max_fec_packet_num + 100];
|
|
|
|
int counter;
|
|
// int timer_fd;
|
|
// u64_t timer_fd64;
|
|
|
|
int ready_for_output;
|
|
u32_t output_n;
|
|
|
|
int append(char *s, int len);
|
|
|
|
ev_timer timer;
|
|
struct ev_loop *loop = 0;
|
|
void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents) = 0;
|
|
|
|
public:
|
|
fec_encode_manager_t();
|
|
~fec_encode_manager_t();
|
|
|
|
fec_parameter_t &get_fec_par() {
|
|
return fec_par;
|
|
}
|
|
void set_data(void *data) {
|
|
timer.data = data;
|
|
}
|
|
|
|
void set_loop_and_cb(struct ev_loop *loop, void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents)) {
|
|
this->loop = loop;
|
|
this->cb = cb;
|
|
ev_init(&timer, cb);
|
|
}
|
|
|
|
int clear_data() {
|
|
counter = 0;
|
|
blob_encode.clear();
|
|
ready_for_output = 0;
|
|
|
|
seq = (u32_t)get_fake_random_number(); // TODO temp solution for a bug.
|
|
|
|
if (loop) {
|
|
ev_timer_stop(loop, &timer);
|
|
}
|
|
return 0;
|
|
}
|
|
int clear_all() {
|
|
// itimerspec zero_its;
|
|
// memset(&zero_its, 0, sizeof(zero_its));
|
|
// timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0);
|
|
|
|
if (loop) {
|
|
ev_timer_stop(loop, &timer);
|
|
loop = 0;
|
|
cb = 0;
|
|
}
|
|
|
|
clear_data();
|
|
|
|
return 0;
|
|
}
|
|
|
|
my_time_t get_first_packet_time() {
|
|
return first_packet_time_for_output;
|
|
}
|
|
|
|
int get_pending_time() {
|
|
return fec_par.timeout;
|
|
}
|
|
|
|
int get_type() {
|
|
return fec_par.mode;
|
|
}
|
|
// u64_t get_timer_fd64();
|
|
int reset_fec_parameter(int data_num, int redundant_num, int mtu, int pending_num, int pending_time, int type);
|
|
int input(char *s, int len /*,int &is_first_packet*/);
|
|
int output(int &n, char **&s_arr, int *&len);
|
|
};
|
|
struct fec_data_t {
|
|
int used;
|
|
u32_t seq;
|
|
int type;
|
|
int data_num;
|
|
int redundant_num;
|
|
int idx;
|
|
char buf[buf_len];
|
|
int len;
|
|
};
|
|
struct fec_group_t {
|
|
int type = -1;
|
|
int data_num = -1;
|
|
int redundant_num = -1;
|
|
int len = -1;
|
|
int fec_done = 0;
|
|
// int data_counter=0;
|
|
map<int, int> group_mp;
|
|
};
|
|
class fec_decode_manager_t : not_copy_able_t {
|
|
anti_replay_t anti_replay;
|
|
fec_data_t *fec_data = 0;
|
|
unordered_map<u32_t, fec_group_t> mp;
|
|
blob_decode_t blob_decode;
|
|
|
|
int index;
|
|
|
|
int output_n;
|
|
char **output_s_arr;
|
|
int *output_len_arr;
|
|
int ready_for_output;
|
|
|
|
char *output_s_arr_buf[max_fec_packet_num + 100]; // only for type=1,for type=0 the buf inside blot_t is used
|
|
int output_len_arr_buf[max_fec_packet_num + 100]; // same
|
|
|
|
public:
|
|
fec_decode_manager_t() {
|
|
fec_data = new fec_data_t[fec_buff_num + 5];
|
|
assert(fec_data != 0);
|
|
clear();
|
|
}
|
|
/*
|
|
fec_decode_manager_t(const fec_decode_manager_t &b)
|
|
{
|
|
assert(0==1);//not allowed to copy
|
|
}*/
|
|
~fec_decode_manager_t() {
|
|
mylog(log_debug, "fec_decode_manager destroyed\n");
|
|
if (fec_data != 0) {
|
|
mylog(log_debug, "fec_data freed\n");
|
|
delete fec_data;
|
|
}
|
|
}
|
|
int clear() {
|
|
anti_replay.clear();
|
|
mp.clear();
|
|
mp.rehash(fec_buff_num * 3);
|
|
|
|
for (int i = 0; i < (int)fec_buff_num; i++)
|
|
fec_data[i].used = 0;
|
|
ready_for_output = 0;
|
|
index = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// int re_init();
|
|
int input(char *s, int len);
|
|
int output(int &n, char **&s_arr, int *&len_arr);
|
|
};
|
|
|
|
#endif /* FEC_MANAGER_H_ */
|