wangyu-UDPspeeder/fec_manager.h
2018-08-05 12:55:07 -05:00

447 lines
8.5 KiB
C++

/*
* fec_manager.h
*
* Created on: Sep 27, 2017
* Author: root
*/
#ifndef FEC_MANAGER_H_
#define FEC_MANAGER_H_
#include "common.h"
#include "log.h"
#include "lib/rs.h"
const int max_blob_packet_num=30000;//how many packet can be contain in a blob_t ,can be set very large
const u32_t anti_replay_buff_size=30000;//can be set very large
const int max_fec_packet_num=255;// this is the limitation of the rs lib
extern u32_t fec_buff_num;
const int rs_str_len=max_fec_packet_num*10+100;
struct fec_parameter_t
{
int version=0;
int mtu=1250;
int queue_len=200;
int timeout=8*1000;
int mode=0;
int rs_cnt=0;
struct rs_parameter_t //parameters for reed solomon
{
unsigned char x;//AKA fec_data_num (x should be same as <index of rs_par>+1 at the moment)
unsigned char y;//fec_redundant_num
}rs_par[255+10];
int rs_from_str(char * s)//todo inefficient
{
vector<string> str_vec=string_to_vec(s,",");
if(str_vec.size()<1) return -1;
vector<rs_parameter_t> par_vec;
for(int i=0;i<(int)str_vec.size();i++)
{
rs_parameter_t tmp_par;
string &tmp_str=str_vec[i];
int x,y;
if(sscanf((char *)tmp_str.c_str(),"%d:%d",&x,&y)!=2)
{
mylog(log_warn,"failed to parse [%s]\n",tmp_str.c_str());
return -1;
}
if(x<1||y<1||x+y>max_fec_packet_num)
{
mylog(log_warn,"invaild value x=%d y=%d\n",x,y);
return -1;
}
tmp_par.x=x;
tmp_par.y=y;
par_vec.push_back(tmp_par);
}
assert(par_vec.size()==str_vec.size());
for(int i=1;i<(int)par_vec.size();i++)
{
if(par_vec[i].x<=par_vec[i-1].x)
{
mylog(log_warn,"error in [%s], x in x:y should be in ascend order\n",s);
return -1;
}
int now_x=par_vec[i].x;
int now_y=par_vec[i].y;
int pre_x=par_vec[i-1].x;
int pre_y=par_vec[i-1].y;
double now_ratio=double(par_vec[i].y)/par_vec[i].x;
double pre_ratio=double(par_vec[i-1].y)/par_vec[i-1].x;
if(pre_ratio<now_ratio)
{
mylog(log_warn,"%d/%d < %d/%d ,not suggested\n",pre_y,pre_x,now_y,now_x);
}
}
{ //special treatment for first parameter
int x=par_vec[0].x;
int y=par_vec[0].y;
for(int i=1;i<=x;i++)
{
rs_par[i-1].x=i;
rs_par[i-1].y=y;
}
}
for(int i=1;i<(int)par_vec.size();i++)
{
int now_x=par_vec[i].x;
int now_y=par_vec[i].y;
int pre_x=par_vec[i-1].x;
int pre_y=par_vec[i-1].y;
rs_par[now_x-1].x=now_x;
rs_par[now_x-1].y=now_y;
double k= double(now_y-pre_y)/double(now_x-pre_x);
for(int j=pre_x+1;j<=now_x-1;j++)
{
int in_x=j;
int in_y= double(pre_y) + double(in_x-pre_x)*k+ 0.9999;// round to upper
if(in_x+in_y>max_fec_packet_num)
{
in_y=max_fec_packet_num-in_x;
assert(in_y>=0&&in_y<=max_fec_packet_num);
}
rs_par[in_x-1].x=in_x;
rs_par[in_x-1].y=in_y;
}
}
rs_cnt=par_vec[par_vec.size()-1].x;
return 0;
}
char *rs_to_str()//todo inefficient
{
static char res[rs_str_len];
string tmp_string;
char tmp_buf[100];
assert(rs_cnt>=1);
for(int i=0;i<rs_cnt;i++)
{
sprintf(tmp_buf,"<%d,%d> ",int(rs_par[i].x),int(rs_par[i].y));
tmp_string+=tmp_buf;
}
strcpy(res,tmp_string.c_str());
return res;
}
rs_parameter_t get_tail()
{
assert(rs_cnt>=1);
return rs_par[rs_cnt-1];
}
int clone(fec_parameter_t & other)
{
version=other.version;
mtu=other.mtu;
queue_len=other.queue_len;
timeout=other.timeout;
mode=other.mode;
assert(other.rs_cnt>=1);
rs_cnt=other.rs_cnt;
memcpy(rs_par,other.rs_par,sizeof(rs_parameter_t)*rs_cnt);
return 0;
}
};
extern fec_parameter_t g_fec_par;
//extern int dynamic_update_fec;
const int anti_replay_timeout=60*1000;// 60s
struct anti_replay_t
{
struct info_t
{
my_time_t my_time;
int index;
};
u64_t replay_buffer[anti_replay_buff_size];
unordered_map<u32_t,info_t> mp;
int index;
anti_replay_t()
{
clear();
}
int clear()
{
memset(replay_buffer,-1,sizeof(replay_buffer));
mp.clear();
mp.rehash(anti_replay_buff_size*3);
index=0;
return 0;
}
void set_invaild(u32_t seq)
{
if(is_vaild(seq)==0)
{
mylog(log_trace,"seq %u exist\n",seq);
//assert(mp.find(seq)!=mp.end());
//mp[seq].my_time=get_current_time_rough();
return;
}
if(replay_buffer[index]!=u64_t(i64_t(-1)))
{
assert(mp.find(replay_buffer[index])!=mp.end());
mp.erase(replay_buffer[index]);
}
replay_buffer[index]=seq;
assert(mp.find(seq)==mp.end());
mp[seq].my_time=get_current_time_rough();
mp[seq].index=index;
index++;
if(index==int(anti_replay_buff_size)) index=0;
}
int is_vaild(u32_t seq)
{
if(mp.find(seq)==mp.end()) return 1;
if(get_current_time_rough()-mp[seq].my_time>anti_replay_timeout)
{
replay_buffer[mp[seq].index]=u64_t(i64_t(-1));
mp.erase(seq);
return 1;
}
return 0;
}
};
struct blob_encode_t
{
char input_buf[(max_fec_packet_num+5)*buf_len];
int current_len;
int counter;
char *output_buf[max_fec_packet_num+100];
blob_encode_t();
int clear();
int get_num();
int get_shard_len(int n);
int get_shard_len(int n,int next_packet_len);
int input(char *s,int len); //len=use len=0 for second and following packet
int output(int n,char ** &s_arr,int & len);
};
struct blob_decode_t
{
char input_buf[(max_fec_packet_num+5)*buf_len];
int current_len;
int last_len;
int counter;
char *output_buf[max_blob_packet_num+100];
int output_len[max_blob_packet_num+100];
blob_decode_t();
int clear();
int input(char *input,int len);
int output(int &n,char ** &output,int *&len_arr);
};
class fec_encode_manager_t
{
private:
u32_t seq;
//int fec_mode;
//int fec_data_num,fec_redundant_num;
//int fec_mtu;
//int fec_queue_len;
//int fec_timeout;
fec_parameter_t fec_par;
my_time_t first_packet_time;
my_time_t first_packet_time_for_output;
blob_encode_t blob_encode;
char input_buf[max_fec_packet_num+5][buf_len];
int input_len[max_fec_packet_num+100];
char *output_buf[max_fec_packet_num+100];
int output_len[max_fec_packet_num+100];
int counter;
//int timer_fd;
//u64_t timer_fd64;
int ready_for_output;
u32_t output_n;
int append(char *s,int len);
ev_timer timer;
struct ev_loop *loop=0;
void (*cb) (struct ev_loop *loop, struct ev_timer *watcher, int revents)=0;
public:
fec_encode_manager_t();
~fec_encode_manager_t();
fec_parameter_t & get_fec_par()
{
return fec_par;
}
void set_data(void * data)
{
timer.data=data;
}
void set_loop_and_cb(struct ev_loop *loop,void (*cb) (struct ev_loop *loop, struct ev_timer *watcher, int revents))
{
this->loop=loop;
this->cb=cb;
ev_init(&timer,cb);
}
int clear_data()
{
counter=0;
blob_encode.clear();
ready_for_output=0;
seq=(u32_t)get_fake_random_number(); //TODO temp solution for a bug.
if(loop)
{
ev_timer_stop(loop,&timer);
}
return 0;
}
int clear_all()
{
//itimerspec zero_its;
//memset(&zero_its, 0, sizeof(zero_its));
//timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0);
if(loop)
{
ev_timer_stop(loop,&timer);
loop=0;
cb=0;
}
clear_data();
return 0;
}
my_time_t get_first_packet_time()
{
return first_packet_time_for_output;
}
int get_pending_time()
{
return fec_par.timeout;
}
int get_type()
{
return fec_par.mode;
}
//u64_t get_timer_fd64();
int reset_fec_parameter(int data_num,int redundant_num,int mtu,int pending_num,int pending_time,int type);
int input(char *s,int len/*,int &is_first_packet*/);
int output(int &n,char ** &s_arr,int *&len);
};
struct fec_data_t
{
int used;
u32_t seq;
int type;
int data_num;
int redundant_num;
int idx;
char buf[buf_len];
int len;
};
struct fec_group_t
{
int type=-1;
int data_num=-1;
int redundant_num=-1;
int len=-1;
//int data_counter=0;
map<int,int> group_mp;
};
class fec_decode_manager_t
{
anti_replay_t anti_replay;
fec_data_t *fec_data;
unordered_map<u32_t, fec_group_t> mp;
blob_decode_t blob_decode;
int index;
int output_n;
char ** output_s_arr;
int * output_len_arr;
int ready_for_output;
char *output_s_arr_buf[max_fec_packet_num+100];//only for type=1,for type=0 the buf inside blot_t is used
int output_len_arr_buf[max_fec_packet_num+100];//same
public:
fec_decode_manager_t()
{
fec_data=new fec_data_t[fec_buff_num+5];
clear();
}
fec_decode_manager_t(const fec_decode_manager_t &b)
{
assert(0==1);//not allowed to copy
}
~fec_decode_manager_t()
{
delete fec_data;
}
int clear()
{
anti_replay.clear();
mp.clear();
mp.rehash(fec_buff_num*3);
for(int i=0;i<(int)fec_buff_num;i++)
fec_data[i].used=0;
ready_for_output=0;
index=0;
return 0;
}
//int re_init();
int input(char *s,int len);
int output(int &n,char ** &s_arr,int* &len_arr);
};
#endif /* FEC_MANAGER_H_ */