wangyu-UDPspeeder/fec_manager.cpp
2023-02-07 05:34:06 -05:00

798 lines
27 KiB
C++

/*
* fec_manager.cpp
*
* Created on: Sep 27, 2017
* Author: root
*/
#include "fec_manager.h"
#include "log.h"
#include "common.h"
#include "lib/rs.h"
#include "fd_manager.h"
// int g_fec_data_num=20;
// int g_fec_redundant_num=10;
// int g_fec_mtu=1250;
// int g_fec_queue_len=200;
// int g_fec_timeout=8*1000; //8ms
// int g_fec_mode=0;
fec_parameter_t g_fec_par;
int debug_fec_enc = 0;
int debug_fec_dec = 0;
// int dynamic_update_fec=1;
const int encode_fast_send = 1;
const int decode_fast_send = 1;
int short_packet_optimize = 1;
int header_overhead = 40;
u32_t fec_buff_num = 2000; // how many packet can fec_decode_manager hold. shouldnt be very large,or it will cost huge memory
blob_encode_t::blob_encode_t() {
clear();
}
int blob_encode_t::clear() {
counter = 0;
current_len = (int)sizeof(u32_t);
return 0;
}
int blob_encode_t::get_num() {
return counter;
}
int blob_encode_t::get_shard_len(int n) {
return round_up_div(current_len, n);
}
int blob_encode_t::get_shard_len(int n, int next_packet_len) {
return round_up_div(current_len + (int)sizeof(u16_t) + next_packet_len, n);
}
int blob_encode_t::input(char *s, int len) {
assert(current_len + len + sizeof(u16_t) + 100 < sizeof(input_buf));
assert(len <= 65535 && len >= 0);
counter++;
assert(counter <= max_blob_packet_num);
write_u16(input_buf + current_len, len);
current_len += sizeof(u16_t);
memcpy(input_buf + current_len, s, len);
current_len += len;
return 0;
}
int blob_encode_t::output(int n, char **&s_arr, int &len) {
len = round_up_div(current_len, n);
write_u32(input_buf, counter);
for (int i = 0; i < n; i++) {
output_buf[i] = input_buf + len * i;
}
s_arr = output_buf;
return 0;
}
blob_decode_t::blob_decode_t() {
clear();
}
int blob_decode_t::clear() {
current_len = 0;
last_len = -1;
counter = 0;
return 0;
}
int blob_decode_t::input(char *s, int len) {
if (last_len != -1) {
assert(last_len == len);
}
counter++;
assert(counter <= max_fec_packet_num);
last_len = len;
assert(current_len + len + 100 < (int)sizeof(input_buf)); // avoid overflow
memcpy(input_buf + current_len, s, len);
current_len += len;
return 0;
}
int blob_decode_t::output(int &n, char **&s_arr, int *&len_arr) {
int parser_pos = 0;
if (parser_pos + (int)sizeof(u32_t) > current_len) {
mylog(log_info, "failed 0\n");
return -1;
}
n = (int)read_u32(input_buf + parser_pos);
if (n > max_blob_packet_num) {
mylog(log_info, "failed 1\n");
return -1;
}
s_arr = output_buf;
len_arr = output_len;
parser_pos += sizeof(u32_t);
for (int i = 0; i < n; i++) {
if (parser_pos + (int)sizeof(u16_t) > current_len) {
mylog(log_info, "failed2 \n");
return -1;
}
len_arr[i] = (int)read_u16(input_buf + parser_pos);
parser_pos += (int)sizeof(u16_t);
if (parser_pos + len_arr[i] > current_len) {
mylog(log_info, "failed 3 %d %d %d\n", parser_pos, len_arr[i], current_len);
return -1;
}
s_arr[i] = input_buf + parser_pos;
parser_pos += len_arr[i];
}
return 0;
}
fec_encode_manager_t::~fec_encode_manager_t() {
clear_all();
// fd_manager.fd64_close(timer_fd64);
}
/*
u64_t fec_encode_manager_t::get_timer_fd64()
{
return timer_fd64;
}*/
fec_encode_manager_t::fec_encode_manager_t() {
// int timer_fd;
/*
if ((timer_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK)) < 0)
{
mylog(log_fatal,"timer_fd create error");
myexit(1);
}
timer_fd64=fd_manager.create(timer_fd);*/
/////reset_fec_parameter(g_fec_data_num,g_fec_redundant_num,g_fec_mtu,g_fec_queue_len,g_fec_timeout,g_fec_mode);
fec_par.clone(g_fec_par);
clear_data();
}
/*
int fec_encode_manager_t::reset_fec_parameter(int data_num,int redundant_num,int mtu,int queue_len,int timeout,int mode)
{
fec_data_num=data_num;
fec_redundant_num=redundant_num;
fec_mtu=mtu;
fec_queue_len=queue_len;
fec_timeout=timeout;
fec_mode=mode;
assert(data_num+redundant_num<max_fec_packet_num);
//clear();
clear_data();
return 0;
}*/
int fec_encode_manager_t::append(char *s, int len /*,int &is_first_packet*/) {
if (counter == 0) {
first_packet_time = get_current_time_us();
const double m = 1000 * 1000;
ev_timer_stop(loop, &timer);
ev_timer_set(&timer, fec_par.timeout / m, 0);
ev_timer_start(loop, &timer);
}
if (fec_par.mode == 0) // for type 0 use blob
{
assert(blob_encode.input(s, len) == 0);
} else if (fec_par.mode == 1) // for tpe 1 use input_buf and counter
{
mylog(log_trace, "counter=%d\n", counter);
assert(len <= 65535 && len >= 0);
// assert(len<=fec_mtu);//relax this limitation
char *p = input_buf[counter] + sizeof(u32_t) + 4 * sizeof(char); // copy directly to final position,avoid unnecessary copy.
// remember to change this,if protocol is modified
write_u16(p, (u16_t)((u32_t)len)); // TODO omit this u16 for data packet while sending
p += sizeof(u16_t);
memcpy(p, s, len);
input_len[counter] = len + sizeof(u16_t);
} else {
assert(0 == 1);
}
counter++;
return 0;
}
int fec_encode_manager_t::input(char *s, int len /*,int &is_first_packet*/) {
if (counter == 0 && fec_par.version != g_fec_par.version) {
fec_par.clone(g_fec_par);
}
int about_to_fec = 0;
int delayed_append = 0;
// int counter_back=counter;
assert(fec_par.mode == 0 || fec_par.mode == 1);
if (fec_par.mode == 0 && s != 0 && counter == 0) {
int out_len = blob_encode.get_shard_len(fec_par.get_tail().x, len);
if (out_len > fec_par.mtu) {
mylog(log_warn, "message too long ori_len=%d out_len=%d fec_mtu=%d,ignored\n", len, out_len, fec_par.mtu);
return -1;
}
}
if (fec_par.mode == 1 && s != 0 && len > fec_par.mtu) {
mylog(log_warn, "mode==1,message len=%d,len>fec_mtu,fec_mtu=%d,packet may not be delivered\n", len, fec_par.mtu);
// return -1;
}
if (s == 0 && counter == 0) {
mylog(log_warn, "unexpected s==0&&counter==0\n");
return -1;
}
if (s == 0) about_to_fec = 1; // now
if (fec_par.mode == 0 && blob_encode.get_shard_len(fec_par.get_tail().x, len) > fec_par.mtu) {
about_to_fec = 1;
delayed_append = 1;
} // fec then add packet
if (fec_par.mode == 0) assert(counter < fec_par.queue_len); // counter will never equal fec_pending_num,if that happens fec should already been done.
if (fec_par.mode == 1) assert(counter < fec_par.get_tail().x);
if (s != 0 && !delayed_append) {
append(s, len);
}
if (fec_par.mode == 0 && counter == fec_par.queue_len) about_to_fec = 1;
if (fec_par.mode == 1 && counter == fec_par.get_tail().x) about_to_fec = 1;
if (about_to_fec) {
char **blob_output = 0;
int fec_len = -1;
mylog(log_trace, "counter=%d\n", counter);
if (counter == 0) {
mylog(log_warn, "unexpected counter==0 here\n");
return -1;
}
int actual_data_num;
int actual_redundant_num;
if (fec_par.mode == 0) {
int tail_x = fec_par.get_tail().x;
int tail_y = fec_par.get_tail().y;
actual_data_num = tail_x;
actual_redundant_num = tail_y;
if (short_packet_optimize) {
u32_t best_len = (blob_encode.get_shard_len(tail_x, 0) + header_overhead) * (tail_x + tail_y);
int best_data_num = tail_x;
assert(tail_x <= fec_par.rs_cnt);
for (int i = 1; i < tail_x; i++) {
assert(fec_par.rs_par[i - 1].x == i);
int tmp_x = fec_par.rs_par[i - 1].x;
int tmp_y = fec_par.rs_par[i - 1].y;
assert(tmp_x == i);
u32_t shard_len = blob_encode.get_shard_len(tmp_x, 0);
if (shard_len > (u32_t)fec_par.mtu) continue;
u32_t new_len = (shard_len + header_overhead) * (tmp_x + tmp_y);
if (new_len < best_len) {
best_len = new_len;
best_data_num = tmp_x;
}
}
actual_data_num = best_data_num;
assert(best_data_num >= 1 && best_data_num <= fec_par.rs_cnt);
actual_redundant_num = fec_par.rs_par[best_data_num - 1].y;
}
assert(blob_encode.output(actual_data_num, blob_output, fec_len) == 0);
if (debug_fec_enc)
mylog(log_debug, "[enc]seq=%08x x=%d y=%d len=%d cnt=%d\n", seq, actual_data_num, actual_redundant_num, fec_len, counter);
else
mylog(log_trace, "[enc]seq=%08x x=%d y=%d len=%d cnt=%d\n", seq, actual_data_num, actual_redundant_num, fec_len, counter);
} else {
assert(counter <= fec_par.rs_cnt);
actual_data_num = counter;
actual_redundant_num = fec_par.rs_par[counter - 1].y;
int sum_ori = 0;
for (int i = 0; i < counter; i++) {
sum_ori += input_len[i];
assert(input_len[i] >= 0);
if (input_len[i] > fec_len) fec_len = input_len[i];
}
int sum = fec_len * counter;
if (debug_fec_enc)
mylog(log_debug, "[enc]seq=%08x x=%d y=%d len=%d sum_ori=%d sum=%d\n", seq, actual_data_num, actual_redundant_num, fec_len, sum_ori, sum);
else
mylog(log_trace, "[enc]seq=%08x x=%d y=%d len=%d sum_ori=%d sum=%d\n", seq, actual_data_num, actual_redundant_num, fec_len, sum_ori, sum);
}
// mylog(log_trace,"%d %d %d\n",actual_data_num,actual_redundant_num,fec_len);
char *tmp_output_buf[max_fec_packet_num + 5] = {0};
for (int i = 0; i < actual_data_num + actual_redundant_num; i++) {
int tmp_idx = 0;
write_u32(input_buf[i] + tmp_idx, seq);
tmp_idx += sizeof(u32_t);
input_buf[i][tmp_idx++] = (unsigned char)fec_par.mode;
if (fec_par.mode == 1 && i < actual_data_num) {
input_buf[i][tmp_idx++] = (unsigned char)0;
input_buf[i][tmp_idx++] = (unsigned char)0;
} else {
input_buf[i][tmp_idx++] = (unsigned char)actual_data_num;
input_buf[i][tmp_idx++] = (unsigned char)actual_redundant_num;
}
input_buf[i][tmp_idx++] = (unsigned char)i;
tmp_output_buf[i] = input_buf[i] + tmp_idx; //////caution ,trick here.
if (fec_par.mode == 0) {
output_len[i] = tmp_idx + fec_len;
if (i < actual_data_num) {
memcpy(input_buf[i] + tmp_idx, blob_output[i], fec_len);
}
} else {
if (i < actual_data_num) {
output_len[i] = tmp_idx + input_len[i];
memset(tmp_output_buf[i] + input_len[i], 0, fec_len - input_len[i]);
} else
output_len[i] = tmp_idx + fec_len;
}
output_buf[i] = input_buf[i]; // output_buf points to same block of memory with different offset
}
if (0) {
printf("seq=%u,fec_len=%d,%d %d,before fec\n", seq, fec_len, actual_data_num, actual_redundant_num);
for (int i = 0; i < actual_data_num; i++) {
printf("{");
for (int j = 0; j < 8 + fec_len; j++) {
log_bare(log_warn, "0x%02x,", (u32_t)(unsigned char)input_buf[i][j]);
}
printf("},\n");
// log_bare(log_warn,"")
}
}
// output_len=blob_len+sizeof(u32_t)+4*sizeof(char);/////remember to change this 4,if modified the protocol
rs_encode2(actual_data_num, actual_data_num + actual_redundant_num, tmp_output_buf, fec_len);
if (0) {
printf("seq=%u,fec_len=%d,%d %d,after fec\n", seq, fec_len, actual_data_num, actual_redundant_num);
for (int i = 0; i < actual_data_num + actual_redundant_num; i++) {
printf("{");
for (int j = 0; j < 8 + fec_len; j++) {
log_bare(log_warn, "0x%02x,", (u32_t)(unsigned char)output_buf[i][j]);
}
printf("},\n");
// log_bare(log_warn,"")
}
}
// mylog(log_trace,"!!! s= %d\n");
assert(ready_for_output == 0);
ready_for_output = 1;
first_packet_time_for_output = first_packet_time;
first_packet_time = 0;
seq++;
counter = 0;
output_n = actual_data_num + actual_redundant_num;
blob_encode.clear();
my_itimerspec its;
memset(&its, 0, sizeof(its));
ev_timer_stop(loop, &timer);
// timerfd_settime(timer_fd,TFD_TIMER_ABSTIME,&its,0);
if (encode_fast_send && fec_par.mode == 1) {
int packet_to_send[max_fec_packet_num + 5] = {0};
int packet_to_send_counter = 0;
// assert(counter!=0);
if (s != 0)
packet_to_send[packet_to_send_counter++] = actual_data_num - 1;
for (int i = actual_data_num; i < actual_data_num + actual_redundant_num; i++) {
packet_to_send[packet_to_send_counter++] = i;
}
output_n = packet_to_send_counter; // re write
for (int i = 0; i < packet_to_send_counter; i++) {
output_buf[i] = output_buf[packet_to_send[i]];
output_len[i] = output_len[packet_to_send[i]];
}
}
} else {
if (encode_fast_send && s != 0 && fec_par.mode == 1) {
assert(counter >= 1);
assert(counter <= 255);
int input_buf_idx = counter - 1;
assert(ready_for_output == 0);
ready_for_output = 1;
first_packet_time_for_output = 0;
output_n = 1;
int tmp_idx = 0;
write_u32(input_buf[input_buf_idx] + tmp_idx, seq);
tmp_idx += sizeof(u32_t);
input_buf[input_buf_idx][tmp_idx++] = (unsigned char)fec_par.mode;
input_buf[input_buf_idx][tmp_idx++] = (unsigned char)0;
input_buf[input_buf_idx][tmp_idx++] = (unsigned char)0;
input_buf[input_buf_idx][tmp_idx++] = (unsigned char)((u32_t)input_buf_idx);
output_len[0] = input_len[input_buf_idx] + tmp_idx;
output_buf[0] = input_buf[input_buf_idx];
if (0) {
printf("seq=%u,buf_idx=%d\n", seq, input_buf_idx);
for (int j = 0; j < output_len[0]; j++) {
log_bare(log_warn, "0x%02x,", (u32_t)(unsigned char)output_buf[0][j]);
}
printf("\n");
}
}
}
if (s != 0 && delayed_append) {
assert(fec_par.mode != 1);
append(s, len);
}
return 0;
}
int fec_encode_manager_t::output(int &n, char **&s_arr, int *&len) {
if (!ready_for_output) {
n = -1;
len = 0;
s_arr = 0;
} else {
n = output_n;
len = output_len;
s_arr = output_buf;
ready_for_output = 0;
}
return 0;
}
/*
int fec_decode_manager_t::re_init()
{
clear();
return 0;
}*/
int fec_decode_manager_t::input(char *s, int len) {
assert(s != 0);
assert(len + 100 < buf_len); // guarenteed by upper level
int tmp_idx = 0;
int tmp_header_len = sizeof(u32_t) + sizeof(char) * 4;
if (len < tmp_header_len) {
mylog(log_warn, "len =%d\n", len);
return -1;
}
u32_t seq = read_u32(s + tmp_idx);
tmp_idx += sizeof(u32_t);
int type = (unsigned char)s[tmp_idx++];
int data_num = (unsigned char)s[tmp_idx++];
int redundant_num = (unsigned char)s[tmp_idx++];
int inner_index = (unsigned char)s[tmp_idx++];
len = len - tmp_idx;
// mylog(log_trace,"input\n");
if (len < 0) {
mylog(log_warn, "len<0\n");
return -1;
}
if (type == 1) {
if (len < (int)sizeof(u16_t)) {
mylog(log_warn, "type==1&&len<2\n");
return -1;
}
if (data_num == 0 && (int)(read_u16(s + tmp_idx) + sizeof(u16_t)) != len) {
mylog(log_warn, "inner_index<data_num&&read_u16(s+tmp_idx)+sizeof(u16_t)!=len %d %d\n", (int)(read_u16(s + tmp_idx) + sizeof(u16_t)), len);
return -1;
}
}
if (type == 0 && data_num == 0) {
mylog(log_warn, "unexpected type==0&&data_num==0\n");
return -1;
}
if (data_num + redundant_num >= max_fec_packet_num) {
mylog(log_warn, "data_num+redundant_num>=max_fec_packet_num\n");
return -1;
}
if (!anti_replay.is_vaild(seq)) {
mylog(log_trace, "!anti_replay.is_vaild(seq) ,seq =%u\n", seq);
return 0;
}
if (mp[seq].fec_done != 0) {
mylog(log_debug, "fec already done, ignore, seq=%u\n", seq);
return -1;
}
if (mp[seq].group_mp.find(inner_index) != mp[seq].group_mp.end()) {
mylog(log_debug, "dup fec index\n"); // duplicate can happen on a normal network, so its just log_debug
return -1;
}
if (mp[seq].type == -1)
mp[seq].type = type;
else {
if (mp[seq].type != type) {
mylog(log_warn, "type mismatch\n");
return -1;
}
}
if (data_num != 0) {
// mp[seq].data_counter++;
if (mp[seq].data_num == -1) {
mp[seq].data_num = data_num;
mp[seq].redundant_num = redundant_num;
mp[seq].len = len;
} else {
if (mp[seq].data_num != data_num || mp[seq].redundant_num != redundant_num || mp[seq].len != len) {
mylog(log_warn, "unexpected mp[seq].data_num!=data_num||mp[seq].redundant_num!=redundant_num||mp[seq].len!=len\n");
return -1;
}
}
}
// mylog(log_info,"mp.size()=%d index=%d\n",mp.size(),index);
if (fec_data[index].used != 0) {
u32_t tmp_seq = fec_data[index].seq;
anti_replay.set_invaild(tmp_seq);
auto tmp_it = mp.find(tmp_seq);
if (tmp_it != mp.end()) {
int x = tmp_it->second.data_num;
int y = tmp_it->second.redundant_num;
int cnt = tmp_it->second.group_mp.size();
if (cnt < x) {
if (debug_fec_dec)
mylog(log_debug, "[dec][failed]seq=%08x x=%d y=%d cnt=%d\n", tmp_seq, x, y, cnt);
else
mylog(log_trace, "[dec][failed]seq=%08x x=%d y=%d cnt=%d\n", tmp_seq, x, y, cnt);
}
mp.erase(tmp_it);
}
if (tmp_seq == seq) {
mylog(log_warn, "unexpected tmp_seq==seq ,seq=%d\n", seq);
return -1;
}
}
fec_data[index].used = 1;
fec_data[index].seq = seq;
fec_data[index].type = type;
fec_data[index].data_num = data_num;
fec_data[index].redundant_num = redundant_num;
fec_data[index].idx = inner_index;
fec_data[index].len = len;
assert(0 <= index && index < (int)fec_buff_num);
assert(len + 100 < buf_len);
memcpy(fec_data[index].buf, s + tmp_idx, len);
mp[seq].group_mp[inner_index] = index;
// index++ at end of function
map<int, int> &inner_mp = mp[seq].group_mp;
int about_to_fec = 0;
if (type == 0) {
// assert((int)inner_mp.size()<=data_num);
if ((int)inner_mp.size() > data_num) {
mylog(log_warn, "inner_mp.size()>data_num\n");
anti_replay.set_invaild(seq);
goto end;
}
if ((int)inner_mp.size() == data_num)
about_to_fec = 1;
} else {
if (mp[seq].data_num != -1) {
if ((int)inner_mp.size() > mp[seq].data_num + 1) {
mylog(log_warn, "inner_mp.size()>data_num+1\n");
anti_replay.set_invaild(seq);
goto end;
}
if ((int)inner_mp.size() >= mp[seq].data_num) {
about_to_fec = 1;
}
}
}
if (about_to_fec) {
int group_data_num = mp[seq].data_num;
int group_redundant_num = mp[seq].redundant_num;
int x_got = 0;
int y_got = 0;
// mylog(log_error,"fec here!\n");
if (type == 0) {
char *fec_tmp_arr[max_fec_packet_num + 5] = {0};
for (auto it = inner_mp.begin(); it != inner_mp.end(); it++) {
if (it->first < group_data_num)
x_got++;
else
y_got++;
fec_tmp_arr[it->first] = fec_data[it->second].buf;
}
assert(rs_decode2(group_data_num, group_data_num + group_redundant_num, fec_tmp_arr, len) == 0); // the input data has been modified in-place
// this line should always succeed
mp[seq].fec_done = 1;
if (debug_fec_dec)
mylog(log_debug, "[dec]seq=%08x x=%d y=%d len=%d cnt=%d X=%d Y=%d\n", seq, group_data_num, group_redundant_num, len, int(inner_mp.size()), x_got, y_got);
else
mylog(log_trace, "[dec]seq=%08x x=%d y=%d len=%d cnt=%d X=%d Y=%d\n", seq, group_data_num, group_redundant_num, len, int(inner_mp.size()), x_got, y_got);
blob_decode.clear();
for (int i = 0; i < group_data_num; i++) {
blob_decode.input(fec_tmp_arr[i], len);
}
if (blob_decode.output(output_n, output_s_arr, output_len_arr) != 0) {
mylog(log_warn, "blob_decode failed\n");
// ready_for_output=0;
anti_replay.set_invaild(seq);
goto end;
}
assert(ready_for_output == 0);
ready_for_output = 1;
anti_replay.set_invaild(seq);
} else // type==1
{
int max_len = -1;
int fec_result_ok = 1;
int data_check_ok = 1;
int debug_num = inner_mp.size();
int missed_packet[max_fec_packet_num + 5];
int missed_packet_counter = 0;
// outupt_s_arr_buf[max_fec_packet_num+5]={0};
// memset(output_s_arr_buf,0,sizeof(output_s_arr_buf));//in efficient
for (int i = 0; i < group_data_num + group_redundant_num; i++) {
output_s_arr_buf[i] = 0;
}
for (auto it = inner_mp.begin(); it != inner_mp.end(); it++) {
if (it->first < group_data_num)
x_got++;
else
y_got++;
output_s_arr_buf[it->first] = fec_data[it->second].buf;
if (fec_data[it->second].len < (int)sizeof(u16_t)) {
mylog(log_warn, "fec_data[it->second].len<(int)sizeof(u16_t)");
data_check_ok = 0;
}
if (fec_data[it->second].len > max_len)
max_len = fec_data[it->second].len;
}
if (max_len != mp[seq].len) {
data_check_ok = 0;
mylog(log_warn, "max_len!=mp[seq].len");
}
if (data_check_ok == 0) {
// ready_for_output=0;
mylog(log_warn, "data_check_ok==0\n");
anti_replay.set_invaild(seq);
goto end;
}
for (auto it = inner_mp.begin(); it != inner_mp.end(); it++) {
int tmp_idx = it->second;
assert(max_len >= fec_data[tmp_idx].len); // guarenteed by data_check_ok
memset(fec_data[tmp_idx].buf + fec_data[tmp_idx].len, 0, max_len - fec_data[tmp_idx].len);
}
for (int i = 0; i < group_data_num; i++) {
if (output_s_arr_buf[i] == 0 || i == inner_index) // only missed packet +current packet
{
missed_packet[missed_packet_counter++] = i;
}
}
mylog(log_trace, "fec done,%d %d,missed_packet_counter=%d\n", group_data_num, group_redundant_num, missed_packet_counter);
assert(rs_decode2(group_data_num, group_data_num + group_redundant_num, output_s_arr_buf, max_len) == 0); // this should always succeed
mp[seq].fec_done = 1;
int sum_ori = 0;
for (int i = 0; i < group_data_num; i++) {
output_len_arr_buf[i] = read_u16(output_s_arr_buf[i]);
sum_ori += output_len_arr_buf[i];
output_s_arr_buf[i] += sizeof(u16_t);
if (output_len_arr_buf[i] > max_data_len) {
mylog(log_warn, "invaild len %d,seq= %u,data_num= %d r_num= %d,i= %d\n", output_len_arr_buf[i], seq, group_data_num, group_redundant_num, i);
fec_result_ok = 0;
for (int i = 0; i < missed_packet_counter; i++) {
log_bare(log_warn, "%d ", missed_packet[i]);
}
log_bare(log_warn, "\n");
// break;
}
}
int sum = max_len * group_data_num;
if (debug_fec_dec)
mylog(log_debug, "[dec]seq=%08x x=%d y=%d len=%d sum_ori=%d sum=%d X=%d Y=%d\n", seq, group_data_num, group_redundant_num, max_len, sum_ori, sum, x_got, y_got);
else
mylog(log_trace, "[dec]seq=%08x x=%d y=%d len=%d sum_ori=%d sum=%d X=%d Y=%d\n", seq, group_data_num, group_redundant_num, max_len, sum_ori, sum, x_got, y_got);
if (fec_result_ok) {
output_n = group_data_num;
if (decode_fast_send) {
output_n = missed_packet_counter;
for (int i = 0; i < missed_packet_counter; i++) {
output_s_arr_buf[i] = output_s_arr_buf[missed_packet[i]];
output_len_arr_buf[i] = output_len_arr_buf[missed_packet[i]];
}
}
output_s_arr = output_s_arr_buf;
output_len_arr = output_len_arr_buf;
assert(ready_for_output == 0);
ready_for_output = 1;
} else {
// fec_not_ok:
ready_for_output = 0;
}
anti_replay.set_invaild(seq);
} // end of type==1
} else // not about_to_fec
{
if (decode_fast_send) {
if (type == 1 && data_num == 0) {
assert(ready_for_output == 0);
output_n = 1;
int check_len = read_u16(fec_data[index].buf);
output_s_arr_buf[0] = fec_data[index].buf + sizeof(u16_t);
output_len_arr_buf[0] = fec_data[index].len - sizeof(u16_t);
if (output_len_arr_buf[0] != check_len) {
mylog(log_warn, "len mismatch %d %d\n", output_len_arr_buf[0], check_len);
}
output_s_arr = output_s_arr_buf;
output_len_arr = output_len_arr_buf;
ready_for_output = 1;
}
}
}
end:
index++;
if (index == int(fec_buff_num)) index = 0;
return 0;
}
int fec_decode_manager_t::output(int &n, char **&s_arr, int *&len_arr) {
if (!ready_for_output) {
n = -1;
s_arr = 0;
len_arr = 0;
} else {
ready_for_output = 0;
n = output_n;
s_arr = output_s_arr;
len_arr = output_len_arr;
}
return 0;
}