/* * libev event processing core, watcher management * * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */ /* this big block deduces configuration from config.h */ #ifndef EV_STANDALONE # ifdef EV_CONFIG_H # include EV_CONFIG_H # else # include "config.h" # endif # if HAVE_FLOOR # ifndef EV_USE_FLOOR # define EV_USE_FLOOR 1 # endif # endif # if HAVE_CLOCK_SYSCALL # ifndef EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 1 # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # endif # endif # elif !defined EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 0 # endif # if HAVE_CLOCK_GETTIME # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # else # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # endif # if HAVE_NANOSLEEP # ifndef EV_USE_NANOSLEEP # define EV_USE_NANOSLEEP EV_FEATURE_OS # endif # else # undef EV_USE_NANOSLEEP # define EV_USE_NANOSLEEP 0 # endif # if HAVE_SELECT && HAVE_SYS_SELECT_H # ifndef EV_USE_SELECT # define EV_USE_SELECT EV_FEATURE_BACKENDS # endif # else # undef EV_USE_SELECT # define EV_USE_SELECT 0 # endif # if HAVE_POLL && HAVE_POLL_H # ifndef EV_USE_POLL # define EV_USE_POLL EV_FEATURE_BACKENDS # endif # else # undef EV_USE_POLL # define EV_USE_POLL 0 # endif # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H # ifndef EV_USE_EPOLL # define EV_USE_EPOLL EV_FEATURE_BACKENDS # endif # else # undef EV_USE_EPOLL # define EV_USE_EPOLL 0 # endif # if HAVE_KQUEUE && HAVE_SYS_EVENT_H # ifndef EV_USE_KQUEUE # define EV_USE_KQUEUE EV_FEATURE_BACKENDS # endif # else # undef EV_USE_KQUEUE # define EV_USE_KQUEUE 0 # endif # if HAVE_PORT_H && HAVE_PORT_CREATE # ifndef EV_USE_PORT # define EV_USE_PORT EV_FEATURE_BACKENDS # endif # else # undef EV_USE_PORT # define EV_USE_PORT 0 # endif # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H # ifndef EV_USE_INOTIFY # define EV_USE_INOTIFY EV_FEATURE_OS # endif # else # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 # endif # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H # ifndef EV_USE_SIGNALFD # define EV_USE_SIGNALFD EV_FEATURE_OS # endif # else # undef EV_USE_SIGNALFD # define EV_USE_SIGNALFD 0 # endif # if HAVE_EVENTFD # ifndef EV_USE_EVENTFD # define EV_USE_EVENTFD EV_FEATURE_OS # endif # else # undef EV_USE_EVENTFD # define EV_USE_EVENTFD 0 # endif #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef EV_H # include EV_H #else # include "ev.h" #endif #if EV_NO_THREADS # undef EV_NO_SMP # define EV_NO_SMP 1 # undef ECB_NO_THREADS # define ECB_NO_THREADS 1 #endif #if EV_NO_SMP # undef EV_NO_SMP # define ECB_NO_SMP 1 #endif #ifndef _WIN32 # include # include # include #else # include # define WIN32_LEAN_AND_MEAN # include # include # ifndef EV_SELECT_IS_WINSOCKET # define EV_SELECT_IS_WINSOCKET 1 # endif # undef EV_AVOID_STDIO #endif /* OS X, in its infinite idiocy, actually HARDCODES * a limit of 1024 into their select. Where people have brains, * OS X engineers apparently have a vacuum. Or maybe they were * ordered to have a vacuum, or they do anything for money. * This might help. Or not. */ #define _DARWIN_UNLIMITED_SELECT 1 /* this block tries to deduce configuration from header-defined symbols and defaults */ /* try to deduce the maximum number of signals on this platform */ #if defined EV_NSIG /* use what's provided */ #elif defined NSIG # define EV_NSIG (NSIG) #elif defined _NSIG # define EV_NSIG (_NSIG) #elif defined SIGMAX # define EV_NSIG (SIGMAX+1) #elif defined SIG_MAX # define EV_NSIG (SIG_MAX+1) #elif defined _SIG_MAX # define EV_NSIG (_SIG_MAX+1) #elif defined MAXSIG # define EV_NSIG (MAXSIG+1) #elif defined MAX_SIG # define EV_NSIG (MAX_SIG+1) #elif defined SIGARRAYSIZE # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */ #elif defined _sys_nsig # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */ #else # define EV_NSIG (8 * sizeof (sigset_t) + 1) #endif #ifndef EV_USE_FLOOR # define EV_USE_FLOOR 0 #endif #ifndef EV_USE_CLOCK_SYSCALL # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS # else # define EV_USE_CLOCK_SYSCALL 0 # endif #endif #if !(_POSIX_TIMERS > 0) # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif #endif #ifndef EV_USE_MONOTONIC # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0 # define EV_USE_MONOTONIC EV_FEATURE_OS # else # define EV_USE_MONOTONIC 0 # endif #endif #ifndef EV_USE_REALTIME # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL #endif #ifndef EV_USE_NANOSLEEP # if _POSIX_C_SOURCE >= 199309L # define EV_USE_NANOSLEEP EV_FEATURE_OS # else # define EV_USE_NANOSLEEP 0 # endif #endif #ifndef EV_USE_SELECT # define EV_USE_SELECT EV_FEATURE_BACKENDS #endif #ifndef EV_USE_POLL # ifdef _WIN32 # define EV_USE_POLL 0 # else # define EV_USE_POLL EV_FEATURE_BACKENDS # endif #endif #ifndef EV_USE_EPOLL # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) # define EV_USE_EPOLL EV_FEATURE_BACKENDS # else # define EV_USE_EPOLL 0 # endif #endif #ifndef EV_USE_KQUEUE # define EV_USE_KQUEUE 0 #endif #ifndef EV_USE_PORT # define EV_USE_PORT 0 #endif #ifndef EV_USE_INOTIFY # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) # define EV_USE_INOTIFY EV_FEATURE_OS # else # define EV_USE_INOTIFY 0 # endif #endif #ifndef EV_PID_HASHSIZE # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1 #endif #ifndef EV_INOTIFY_HASHSIZE # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1 #endif #ifndef EV_USE_EVENTFD # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) # define EV_USE_EVENTFD EV_FEATURE_OS # else # define EV_USE_EVENTFD 0 # endif #endif #ifndef EV_USE_SIGNALFD # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) # define EV_USE_SIGNALFD EV_FEATURE_OS # else # define EV_USE_SIGNALFD 0 # endif #endif #if 0 /* debugging */ # define EV_VERIFY 3 # define EV_USE_4HEAP 1 # define EV_HEAP_CACHE_AT 1 #endif #ifndef EV_VERIFY # define EV_VERIFY (EV_FEATURE_API ? 1 : 0) #endif #ifndef EV_USE_4HEAP # define EV_USE_4HEAP EV_FEATURE_DATA #endif #ifndef EV_HEAP_CACHE_AT # define EV_HEAP_CACHE_AT EV_FEATURE_DATA #endif #ifdef __ANDROID__ /* supposedly, android doesn't typedef fd_mask */ # undef EV_USE_SELECT # define EV_USE_SELECT 0 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */ # undef EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 0 #endif /* aix's poll.h seems to cause lots of trouble */ #ifdef _AIX /* AIX has a completely broken poll.h header */ # undef EV_USE_POLL # define EV_USE_POLL 0 #endif /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */ /* which makes programs even slower. might work on other unices, too. */ #if EV_USE_CLOCK_SYSCALL # include # ifdef SYS_clock_gettime # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts)) # undef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # else # undef EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 0 # endif #endif /* this block fixes any misconfiguration where we know we run into trouble otherwise */ #ifndef CLOCK_MONOTONIC # undef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 #endif #ifndef CLOCK_REALTIME # undef EV_USE_REALTIME # define EV_USE_REALTIME 0 #endif #if !EV_STAT_ENABLE # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 #endif #if !EV_USE_NANOSLEEP /* hp-ux has it in sys/time.h, which we unconditionally include above */ # if !defined _WIN32 && !defined __hpux # include # endif #endif #if EV_USE_INOTIFY # include # include /* some very old inotify.h headers don't have IN_DONT_FOLLOW */ # ifndef IN_DONT_FOLLOW # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 # endif #endif #if EV_USE_EVENTFD /* our minimum requirement is glibc 2.7 which has the stub, but not the header */ # include # ifndef EFD_NONBLOCK # define EFD_NONBLOCK O_NONBLOCK # endif # ifndef EFD_CLOEXEC # ifdef O_CLOEXEC # define EFD_CLOEXEC O_CLOEXEC # else # define EFD_CLOEXEC 02000000 # endif # endif EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags); #endif #if EV_USE_SIGNALFD /* our minimum requirement is glibc 2.7 which has the stub, but not the header */ # include # ifndef SFD_NONBLOCK # define SFD_NONBLOCK O_NONBLOCK # endif # ifndef SFD_CLOEXEC # ifdef O_CLOEXEC # define SFD_CLOEXEC O_CLOEXEC # else # define SFD_CLOEXEC 02000000 # endif # endif EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags); struct signalfd_siginfo { uint32_t ssi_signo; char pad[128 - sizeof (uint32_t)]; }; #endif /**/ #if EV_VERIFY >= 3 # define EV_FREQUENT_CHECK ev_verify (EV_A) #else # define EV_FREQUENT_CHECK do { } while (0) #endif /* * This is used to work around floating point rounding problems. * This value is good at least till the year 4000. */ #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */ /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */ #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0) #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0) /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */ /* ECB.H BEGIN */ /* * libecb - http://software.schmorp.de/pkg/libecb * * Copyright (©) 2009-2015 Marc Alexander Lehmann * Copyright (©) 2011 Emanuele Giaquinta * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */ #ifndef ECB_H #define ECB_H /* 16 bits major, 16 bits minor */ #define ECB_VERSION 0x00010005 #ifdef _WIN32 typedef signed char int8_t; typedef unsigned char uint8_t; typedef signed short int16_t; typedef unsigned short uint16_t; typedef signed int int32_t; typedef unsigned int uint32_t; #if __GNUC__ typedef signed long long int64_t; typedef unsigned long long uint64_t; #else /* _MSC_VER || __BORLANDC__ */ typedef signed __int64 int64_t; typedef unsigned __int64 uint64_t; #endif #ifdef _WIN64 #define ECB_PTRSIZE 8 typedef uint64_t uintptr_t; typedef int64_t intptr_t; #else #define ECB_PTRSIZE 4 typedef uint32_t uintptr_t; typedef int32_t intptr_t; #endif #else #include #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU #define ECB_PTRSIZE 8 #else #define ECB_PTRSIZE 4 #endif #endif #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) /* work around x32 idiocy by defining proper macros */ #if ECB_GCC_AMD64 || ECB_MSVC_AMD64 #if _ILP32 #define ECB_AMD64_X32 1 #else #define ECB_AMD64 1 #endif #endif /* many compilers define _GNUC_ to some versions but then only implement * what their idiot authors think are the "more important" extensions, * causing enormous grief in return for some better fake benchmark numbers. * or so. * we try to detect these and simply assume they are not gcc - if they have * an issue with that they should have done it right in the first place. */ #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__ #define ECB_GCC_VERSION(major,minor) 0 #else #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) #endif #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor))) #if __clang__ && defined __has_builtin #define ECB_CLANG_BUILTIN(x) __has_builtin (x) #else #define ECB_CLANG_BUILTIN(x) 0 #endif #if __clang__ && defined __has_extension #define ECB_CLANG_EXTENSION(x) __has_extension (x) #else #define ECB_CLANG_EXTENSION(x) 0 #endif #define ECB_CPP (__cplusplus+0) #define ECB_CPP11 (__cplusplus >= 201103L) #if ECB_CPP #define ECB_C 0 #define ECB_STDC_VERSION 0 #else #define ECB_C 1 #define ECB_STDC_VERSION __STDC_VERSION__ #endif #define ECB_C99 (ECB_STDC_VERSION >= 199901L) #define ECB_C11 (ECB_STDC_VERSION >= 201112L) #if ECB_CPP #define ECB_EXTERN_C extern "C" #define ECB_EXTERN_C_BEG ECB_EXTERN_C { #define ECB_EXTERN_C_END } #else #define ECB_EXTERN_C extern #define ECB_EXTERN_C_BEG #define ECB_EXTERN_C_END #endif /*****************************************************************************/ /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ #if ECB_NO_THREADS #define ECB_NO_SMP 1 #endif #if ECB_NO_SMP #define ECB_MEMORY_FENCE do { } while (0) #endif /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ #if __xlC__ && ECB_CPP #include #endif #if 1400 <= _MSC_VER #include /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */ #endif #ifndef ECB_MEMORY_FENCE #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 #if __i386 || __i386__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif ECB_GCC_AMD64 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") #elif defined __ARM_ARCH_2__ \ || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \ || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \ || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \ || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \ || defined __ARM_ARCH_5TEJ__ /* should not need any, unless running old code on newer cpu - arm doesn't support that */ #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \ || defined __ARM_ARCH_6T2__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") #elif __aarch64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") #elif defined __s390__ || defined __s390x__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") #elif defined __mips__ /* GNU/Linux emulates sync on mips1 architectures, so we force its use */ /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */ #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory") #elif defined __alpha__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory") #elif defined __hppa__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif defined __ia64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory") #elif defined __m68k__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #elif defined __m88k__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory") #elif defined __sh__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #endif #endif #endif #ifndef ECB_MEMORY_FENCE #if ECB_GCC_VERSION(4,7) /* see comment below (stdatomic.h) about the C11 memory model. */ #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) #elif ECB_CLANG_EXTENSION(c_atomic) /* see comment below (stdatomic.h) about the C11 memory model. */ #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ #define ECB_MEMORY_FENCE __sync_synchronize () #elif _MSC_VER >= 1500 /* VC++ 2008 */ /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier() #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */ #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier() #elif _MSC_VER >= 1400 /* VC++ 2005 */ #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) #define ECB_MEMORY_FENCE _ReadWriteBarrier () #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () #elif defined _WIN32 #include #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 #include #define ECB_MEMORY_FENCE __machine_rw_barrier () #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () #elif __xlC__ #define ECB_MEMORY_FENCE __sync () #endif #endif #ifndef ECB_MEMORY_FENCE #if ECB_C11 && !defined __STDC_NO_ATOMICS__ /* we assume that these memory fences work on all variables/all memory accesses, */ /* not just C11 atomics and atomic accesses */ #include /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */ /* any fence other than seq_cst, which isn't very efficient for us. */ /* Why that is, we don't know - either the C11 memory model is quite useless */ /* for most usages, or gcc and clang have a bug */ /* I *currently* lean towards the latter, and inefficiently implement */ /* all three of ecb's fences as a seq_cst fence */ /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */ /* for all __atomic_thread_fence's except seq_cst */ #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) #endif #endif #ifndef ECB_MEMORY_FENCE #if !ECB_AVOID_PTHREADS /* * if you get undefined symbol references to pthread_mutex_lock, * or failure to find pthread.h, then you should implement * the ECB_MEMORY_FENCE operations for your cpu/compiler * OR provide pthread.h and link against the posix thread library * of your system. */ #include #define ECB_NEEDS_PTHREADS 1 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) #endif #endif #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE #endif #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE #endif /*****************************************************************************/ #if ECB_CPP #define ecb_inline static inline #elif ECB_GCC_VERSION(2,5) #define ecb_inline static __inline__ #elif ECB_C99 #define ecb_inline static inline #else #define ecb_inline static #endif #if ECB_GCC_VERSION(3,3) #define ecb_restrict __restrict__ #elif ECB_C99 #define ecb_restrict restrict #else #define ecb_restrict #endif typedef int ecb_bool; #define ECB_CONCAT_(a, b) a ## b #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) #define ECB_STRINGIFY_(a) # a #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr)) #define ecb_function_ ecb_inline #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) #define ecb_attribute(attrlist) __attribute__ (attrlist) #else #define ecb_attribute(attrlist) #endif #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p) #define ecb_is_constant(expr) __builtin_constant_p (expr) #else /* possible C11 impl for integral types typedef struct ecb_is_constant_struct ecb_is_constant_struct; #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */ #define ecb_is_constant(expr) 0 #endif #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect) #define ecb_expect(expr,value) __builtin_expect ((expr),(value)) #else #define ecb_expect(expr,value) (expr) #endif #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch) #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) #else #define ecb_prefetch(addr,rw,locality) #endif /* no emulation for ecb_decltype */ #if ECB_CPP11 // older implementations might have problems with decltype(x)::type, work around it template struct ecb_decltype_t { typedef T type; }; #define ecb_decltype(x) ecb_decltype_t::type #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8) #define ecb_decltype(x) __typeof__ (x) #endif #if _MSC_VER >= 1300 #define ecb_deprecated __declspec (deprecated) #else #define ecb_deprecated ecb_attribute ((__deprecated__)) #endif #if _MSC_VER >= 1500 #define ecb_deprecated_message(msg) __declspec (deprecated (msg)) #elif ECB_GCC_VERSION(4,5) #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg)) #else #define ecb_deprecated_message(msg) ecb_deprecated #endif #if _MSC_VER >= 1400 #define ecb_noinline __declspec (noinline) #else #define ecb_noinline ecb_attribute ((__noinline__)) #endif #define ecb_unused ecb_attribute ((__unused__)) #define ecb_const ecb_attribute ((__const__)) #define ecb_pure ecb_attribute ((__pure__)) #if ECB_C11 || __IBMC_NORETURN /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */ #define ecb_noreturn _Noreturn #elif ECB_CPP11 #define ecb_noreturn [[noreturn]] #elif _MSC_VER >= 1200 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */ #define ecb_noreturn __declspec (noreturn) #else #define ecb_noreturn ecb_attribute ((__noreturn__)) #endif #if ECB_GCC_VERSION(4,3) #define ecb_artificial ecb_attribute ((__artificial__)) #define ecb_hot ecb_attribute ((__hot__)) #define ecb_cold ecb_attribute ((__cold__)) #else #define ecb_artificial #define ecb_hot #define ecb_cold #endif /* put around conditional expressions if you are very sure that the */ /* expression is mostly true or mostly false. note that these return */ /* booleans, not the expression. */ #define ecb_expect_false(expr) ecb_expect (!!(expr), 0) #define ecb_expect_true(expr) ecb_expect (!!(expr), 1) /* for compatibility to the rest of the world */ #define ecb_likely(expr) ecb_expect_true (expr) #define ecb_unlikely(expr) ecb_expect_false (expr) /* count trailing zero bits and count # of one bits */ #if ECB_GCC_VERSION(3,4) \ || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ && ECB_CLANG_BUILTIN(__builtin_popcount)) /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */ #define ecb_ld32(x) (__builtin_clz (x) ^ 31) #define ecb_ld64(x) (__builtin_clzll (x) ^ 63) #define ecb_ctz32(x) __builtin_ctz (x) #define ecb_ctz64(x) __builtin_ctzll (x) #define ecb_popcount32(x) __builtin_popcount (x) /* no popcountll */ #else ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); ecb_function_ ecb_const int ecb_ctz32 (uint32_t x) { #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) unsigned long r; _BitScanForward (&r, x); return (int)r; #else int r = 0; x &= ~x + 1; /* this isolates the lowest bit */ #if ECB_branchless_on_i386 r += !!(x & 0xaaaaaaaa) << 0; r += !!(x & 0xcccccccc) << 1; r += !!(x & 0xf0f0f0f0) << 2; r += !!(x & 0xff00ff00) << 3; r += !!(x & 0xffff0000) << 4; #else if (x & 0xaaaaaaaa) r += 1; if (x & 0xcccccccc) r += 2; if (x & 0xf0f0f0f0) r += 4; if (x & 0xff00ff00) r += 8; if (x & 0xffff0000) r += 16; #endif return r; #endif } ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); ecb_function_ ecb_const int ecb_ctz64 (uint64_t x) { #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) unsigned long r; _BitScanForward64 (&r, x); return (int)r; #else int shift = x & 0xffffffff ? 0 : 32; return ecb_ctz32 (x >> shift) + shift; #endif } ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); ecb_function_ ecb_const int ecb_popcount32 (uint32_t x) { x -= (x >> 1) & 0x55555555; x = ((x >> 2) & 0x33333333) + (x & 0x33333333); x = ((x >> 4) + x) & 0x0f0f0f0f; x *= 0x01010101; return x >> 24; } ecb_function_ ecb_const int ecb_ld32 (uint32_t x); ecb_function_ ecb_const int ecb_ld32 (uint32_t x) { #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) unsigned long r; _BitScanReverse (&r, x); return (int)r; #else int r = 0; if (x >> 16) { x >>= 16; r += 16; } if (x >> 8) { x >>= 8; r += 8; } if (x >> 4) { x >>= 4; r += 4; } if (x >> 2) { x >>= 2; r += 2; } if (x >> 1) { r += 1; } return r; #endif } ecb_function_ ecb_const int ecb_ld64 (uint64_t x); ecb_function_ ecb_const int ecb_ld64 (uint64_t x) { #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) unsigned long r; _BitScanReverse64 (&r, x); return (int)r; #else int r = 0; if (x >> 32) { x >>= 32; r += 32; } return r + ecb_ld32 (x); #endif } #endif ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x); ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x); ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x) { return ( (x * 0x0802U & 0x22110U) | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; } ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x); ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x) { x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); x = ( x >> 8 ) | ( x << 8); return x; } ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x); ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x) { x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); x = ( x >> 16 ) | ( x << 16); return x; } /* popcount64 is only available on 64 bit cpus as gcc builtin */ /* so for this version we are lazy */ ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); ecb_function_ ecb_const int ecb_popcount64 (uint64_t x) { return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); } ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count); ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count); ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count); ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count); ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) #define ecb_bswap16(x) __builtin_bswap16 (x) #else #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) #endif #define ecb_bswap32(x) __builtin_bswap32 (x) #define ecb_bswap64(x) __builtin_bswap64 (x) #elif _MSC_VER #include #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x))) #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x))) #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x))) #else ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x); ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x) { return ecb_rotl16 (x, 8); } ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x); ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x) { return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); } ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x); ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x) { return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); } #endif #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable) #define ecb_unreachable() __builtin_unreachable () #else /* this seems to work fine, but gcc always emits a warning for it :/ */ ecb_inline ecb_noreturn void ecb_unreachable (void); ecb_inline ecb_noreturn void ecb_unreachable (void) { } #endif /* try to tell the compiler that some condition is definitely true */ #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void); ecb_inline ecb_const uint32_t ecb_byteorder_helper (void) { /* the union code still generates code under pressure in gcc, */ /* but less than using pointers, and always seems to */ /* successfully return a constant. */ /* the reason why we have this horrible preprocessor mess */ /* is to avoid it in all cases, at least on common architectures */ /* or when using a recent enough gcc version (>= 4.6) */ #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__) #define ECB_LITTLE_ENDIAN 1 return 0x44332211; #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \ || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__) #define ECB_BIG_ENDIAN 1 return 0x11223344; #else union { uint8_t c[4]; uint32_t u; } u = { 0x11, 0x22, 0x33, 0x44 }; return u.u; #endif } ecb_inline ecb_const ecb_bool ecb_big_endian (void); ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; } ecb_inline ecb_const ecb_bool ecb_little_endian (void); ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; } #if ECB_GCC_VERSION(3,0) || ECB_C99 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) #else #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) #endif #if ECB_CPP template static inline T ecb_div_rd (T val, T div) { return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; } template static inline T ecb_div_ru (T val, T div) { return val < 0 ? - ((-val ) / div) : (val + div - 1) / div; } #else #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) #endif #if ecb_cplusplus_does_not_suck /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ template static inline int ecb_array_length (const T (&arr)[N]) { return N; } #else #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) #endif ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x) { unsigned int s = (x & 0x8000) << (31 - 15); int e = (x >> 10) & 0x001f; unsigned int m = x & 0x03ff; if (ecb_expect_false (e == 31)) /* infinity or NaN */ e = 255 - (127 - 15); else if (ecb_expect_false (!e)) { if (ecb_expect_true (!m)) /* zero, handled by code below by forcing e to 0 */ e = 0 - (127 - 15); else { /* subnormal, renormalise */ unsigned int s = 10 - ecb_ld32 (m); m = (m << s) & 0x3ff; /* mask implicit bit */ e -= s - 1; } } /* e and m now are normalised, or zero, (or inf or nan) */ e += 127 - 15; return s | (e << 23) | (m << (23 - 10)); } ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x) { unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ unsigned int m = x & 0x007fffff; x &= 0x7fffffff; /* if it's within range of binary16 normals, use fast path */ if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff)) { /* mantissa round-to-even */ m += 0x00000fff + ((m >> (23 - 10)) & 1); /* handle overflow */ if (ecb_expect_false (m >= 0x00800000)) { m >>= 1; e += 1; } return s | (e << 10) | (m >> (23 - 10)); } /* handle large numbers and infinity */ if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) return s | 0x7c00; /* handle zero, subnormals and small numbers */ if (ecb_expect_true (x < 0x38800000)) { /* zero */ if (ecb_expect_true (!x)) return s; /* handle subnormals */ /* too small, will be zero */ if (e < (14 - 24)) /* might not be sharp, but is good enough */ return s; m |= 0x00800000; /* make implicit bit explicit */ /* very tricky - we need to round to the nearest e (+10) bit value */ { unsigned int bits = 14 - e; unsigned int half = (1 << (bits - 1)) - 1; unsigned int even = (m >> bits) & 1; /* if this overflows, we will end up with a normalised number */ m = (m + half + even) >> bits; } return s | m; } /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ m >>= 13; return s | 0x7c00 | m | !m; } /*******************************************************************************/ /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ /* basically, everything uses "ieee pure-endian" floating point numbers */ /* the only noteworthy exception is ancient armle, which uses order 43218765 */ #if 0 \ || __i386 || __i386__ \ || ECB_GCC_AMD64 \ || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ || defined __s390__ || defined __s390x__ \ || defined __mips__ \ || defined __alpha__ \ || defined __hppa__ \ || defined __ia64__ \ || defined __m68k__ \ || defined __m88k__ \ || defined __sh__ \ || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ || defined __aarch64__ #define ECB_STDFP 1 #include /* for memcpy */ #else #define ECB_STDFP 0 #endif #ifndef ECB_NO_LIBM #include /* for frexp*, ldexp*, INFINITY, NAN */ /* only the oldest of old doesn't have this one. solaris. */ #ifdef INFINITY #define ECB_INFINITY INFINITY #else #define ECB_INFINITY HUGE_VAL #endif #ifdef NAN #define ECB_NAN NAN #else #define ECB_NAN ECB_INFINITY #endif #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L #define ecb_ldexpf(x,e) ldexpf ((x), (e)) #define ecb_frexpf(x,e) frexpf ((x), (e)) #else #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e)) #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e)) #endif /* convert a float to ieee single/binary32 */ ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x); ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x) { uint32_t r; #if ECB_STDFP memcpy (&r, &x, 4); #else /* slow emulation, works for anything but -0 */ uint32_t m; int e; if (x == 0e0f ) return 0x00000000U; if (x > +3.40282346638528860e+38f) return 0x7f800000U; if (x < -3.40282346638528860e+38f) return 0xff800000U; if (x != x ) return 0x7fbfffffU; m = ecb_frexpf (x, &e) * 0x1000000U; r = m & 0x80000000U; if (r) m = -m; if (e <= -126) { m &= 0xffffffU; m >>= (-125 - e); e = -126; } r |= (e + 126) << 23; r |= m & 0x7fffffU; #endif return r; } /* converts an ieee single/binary32 to a float */ ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x); ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x) { float r; #if ECB_STDFP memcpy (&r, &x, 4); #else /* emulation, only works for normals and subnormals and +0 */ int neg = x >> 31; int e = (x >> 23) & 0xffU; x &= 0x7fffffU; if (e) x |= 0x800000U; else e = 1; /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126); r = neg ? -r : r; #endif return r; } /* convert a double to ieee double/binary64 */ ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x); ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x) { uint64_t r; #if ECB_STDFP memcpy (&r, &x, 8); #else /* slow emulation, works for anything but -0 */ uint64_t m; int e; if (x == 0e0 ) return 0x0000000000000000U; if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U; if (x < -1.79769313486231470e+308) return 0xfff0000000000000U; if (x != x ) return 0X7ff7ffffffffffffU; m = frexp (x, &e) * 0x20000000000000U; r = m & 0x8000000000000000;; if (r) m = -m; if (e <= -1022) { m &= 0x1fffffffffffffU; m >>= (-1021 - e); e = -1022; } r |= ((uint64_t)(e + 1022)) << 52; r |= m & 0xfffffffffffffU; #endif return r; } /* converts an ieee double/binary64 to a double */ ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x); ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x) { double r; #if ECB_STDFP memcpy (&r, &x, 8); #else /* emulation, only works for normals and subnormals and +0 */ int neg = x >> 63; int e = (x >> 52) & 0x7ffU; x &= 0xfffffffffffffU; if (e) x |= 0x10000000000000U; else e = 1; /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */ r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022); r = neg ? -r : r; #endif return r; } /* convert a float to ieee half/binary16 */ ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x); ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x) { return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x)); } /* convert an ieee half/binary16 to float */ ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x); ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x) { return ecb_binary32_to_float (ecb_binary16_to_binary32 (x)); } #endif #endif /* ECB.H END */ #if ECB_MEMORY_FENCE_NEEDS_PTHREADS /* if your architecture doesn't need memory fences, e.g. because it is * single-cpu/core, or if you use libev in a project that doesn't use libev * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling * libev, in which cases the memory fences become nops. * alternatively, you can remove this #error and link against libpthread, * which will then provide the memory fences. */ # error "memory fences not defined for your architecture, please report" #endif #ifndef ECB_MEMORY_FENCE # define ECB_MEMORY_FENCE do { } while (0) # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE #endif #define expect_false(cond) ecb_expect_false (cond) #define expect_true(cond) ecb_expect_true (cond) #define noinline ecb_noinline #define inline_size ecb_inline #if EV_FEATURE_CODE # define inline_speed ecb_inline #else # define inline_speed noinline static #endif #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) #if EV_MINPRI == EV_MAXPRI # define ABSPRI(w) (((W)w), 0) #else # define ABSPRI(w) (((W)w)->priority - EV_MINPRI) #endif #define EMPTY /* required for microsofts broken pseudo-c compiler */ #define EMPTY2(a,b) /* used to suppress some warnings */ typedef ev_watcher *W; typedef ev_watcher_list *WL; typedef ev_watcher_time *WT; #define ev_active(w) ((W)(w))->active #define ev_at(w) ((WT)(w))->at #if EV_USE_REALTIME /* sig_atomic_t is used to avoid per-thread variables or locking but still */ /* giving it a reasonably high chance of working on typical architectures */ static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ #endif #if EV_USE_MONOTONIC static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ #endif #ifndef EV_FD_TO_WIN32_HANDLE # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd) #endif #ifndef EV_WIN32_HANDLE_TO_FD # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0) #endif #ifndef EV_WIN32_CLOSE_FD # define EV_WIN32_CLOSE_FD(fd) close (fd) #endif #ifdef _WIN32 # include "ev_win32.c" #endif /*****************************************************************************/ /* define a suitable floor function (only used by periodics atm) */ #if EV_USE_FLOOR # include # define ev_floor(v) floor (v) #else #include /* a floor() replacement function, should be independent of ev_tstamp type */ noinline static ev_tstamp ev_floor (ev_tstamp v) { /* the choice of shift factor is not terribly important */ #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */ const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.; #else const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.; #endif /* argument too large for an unsigned long? */ if (expect_false (v >= shift)) { ev_tstamp f; if (v == v - 1.) return v; /* very large number */ f = shift * ev_floor (v * (1. / shift)); return f + ev_floor (v - f); } /* special treatment for negative args? */ if (expect_false (v < 0.)) { ev_tstamp f = -ev_floor (-v); return f - (f == v ? 0 : 1); } /* fits into an unsigned long */ return (unsigned long)v; } #endif /*****************************************************************************/ #ifdef __linux # include #endif noinline ecb_cold static unsigned int ev_linux_version (void) { #ifdef __linux unsigned int v = 0; struct utsname buf; int i; char *p = buf.release; if (uname (&buf)) return 0; for (i = 3+1; --i; ) { unsigned int c = 0; for (;;) { if (*p >= '0' && *p <= '9') c = c * 10 + *p++ - '0'; else { p += *p == '.'; break; } } v = (v << 8) | c; } return v; #else return 0; #endif } /*****************************************************************************/ #if EV_AVOID_STDIO noinline ecb_cold static void ev_printerr (const char *msg) { write (STDERR_FILENO, msg, strlen (msg)); } #endif static void (*syserr_cb)(const char *msg) EV_THROW; ecb_cold void ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW { syserr_cb = cb; } noinline ecb_cold static void ev_syserr (const char *msg) { if (!msg) msg = "(libev) system error"; if (syserr_cb) syserr_cb (msg); else { #if EV_AVOID_STDIO ev_printerr (msg); ev_printerr (": "); ev_printerr (strerror (errno)); ev_printerr ("\n"); #else perror (msg); #endif abort (); } } static void * ev_realloc_emul (void *ptr, long size) EV_THROW { /* some systems, notably openbsd and darwin, fail to properly * implement realloc (x, 0) (as required by both ansi c-89 and * the single unix specification, so work around them here. * recently, also (at least) fedora and debian started breaking it, * despite documenting it otherwise. */ if (size) return realloc (ptr, size); free (ptr); return 0; } static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul; ecb_cold void ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW { alloc = cb; } inline_speed void * ev_realloc (void *ptr, long size) { ptr = alloc (ptr, size); if (!ptr && size) { #if EV_AVOID_STDIO ev_printerr ("(libev) memory allocation failed, aborting.\n"); #else fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size); #endif abort (); } return ptr; } #define ev_malloc(size) ev_realloc (0, (size)) #define ev_free(ptr) ev_realloc ((ptr), 0) /*****************************************************************************/ /* set in reify when reification needed */ #define EV_ANFD_REIFY 1 /* file descriptor info structure */ typedef struct { WL head; unsigned char events; /* the events watched for */ unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */ unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ unsigned char unused; #if EV_USE_EPOLL unsigned int egen; /* generation counter to counter epoll bugs */ #endif #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP SOCKET handle; #endif #if EV_USE_IOCP OVERLAPPED or, ow; #endif } ANFD; /* stores the pending event set for a given watcher */ typedef struct { W w; int events; /* the pending event set for the given watcher */ } ANPENDING; #if EV_USE_INOTIFY /* hash table entry per inotify-id */ typedef struct { WL head; } ANFS; #endif /* Heap Entry */ #if EV_HEAP_CACHE_AT /* a heap element */ typedef struct { ev_tstamp at; WT w; } ANHE; #define ANHE_w(he) (he).w /* access watcher, read-write */ #define ANHE_at(he) (he).at /* access cached at, read-only */ #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ #else /* a heap element */ typedef WT ANHE; #define ANHE_w(he) (he) #define ANHE_at(he) (he)->at #define ANHE_at_cache(he) #endif #if EV_MULTIPLICITY struct ev_loop { ev_tstamp ev_rt_now; #define ev_rt_now ((loop)->ev_rt_now) #define VAR(name,decl) decl; #include "ev_vars.h" #undef VAR }; #include "ev_wrap.h" static struct ev_loop default_loop_struct; EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */ #else EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */ #define VAR(name,decl) static decl; #include "ev_vars.h" #undef VAR static int ev_default_loop_ptr; #endif #if EV_FEATURE_API # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A) # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A) # define EV_INVOKE_PENDING invoke_cb (EV_A) #else # define EV_RELEASE_CB (void)0 # define EV_ACQUIRE_CB (void)0 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A) #endif #define EVBREAK_RECURSE 0x80 /*****************************************************************************/ #ifndef EV_HAVE_EV_TIME ev_tstamp ev_time (void) EV_THROW { #if EV_USE_REALTIME if (expect_true (have_realtime)) { struct timespec ts; clock_gettime (CLOCK_REALTIME, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif struct timeval tv; gettimeofday (&tv, 0); return tv.tv_sec + tv.tv_usec * 1e-6; } #endif inline_size ev_tstamp get_clock (void) { #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { struct timespec ts; clock_gettime (CLOCK_MONOTONIC, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif return ev_time (); } #if EV_MULTIPLICITY ev_tstamp ev_now (EV_P) EV_THROW { return ev_rt_now; } #endif void ev_sleep (ev_tstamp delay) EV_THROW { if (delay > 0.) { #if EV_USE_NANOSLEEP struct timespec ts; EV_TS_SET (ts, delay); nanosleep (&ts, 0); #elif defined _WIN32 Sleep ((unsigned long)(delay * 1e3)); #else struct timeval tv; /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ /* something not guaranteed by newer posix versions, but guaranteed */ /* by older ones */ EV_TV_SET (tv, delay); select (0, 0, 0, 0, &tv); #endif } } /*****************************************************************************/ #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ /* find a suitable new size for the given array, */ /* hopefully by rounding to a nice-to-malloc size */ inline_size int array_nextsize (int elem, int cur, int cnt) { int ncur = cur + 1; do ncur <<= 1; while (cnt > ncur); /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */ if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) { ncur *= elem; ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); ncur = ncur - sizeof (void *) * 4; ncur /= elem; } return ncur; } noinline ecb_cold static void * array_realloc (int elem, void *base, int *cur, int cnt) { *cur = array_nextsize (elem, *cur, cnt); return ev_realloc (base, elem * *cur); } #define array_init_zero(base,count) \ memset ((void *)(base), 0, sizeof (*(base)) * (count)) #define array_needsize(type,base,cur,cnt,init) \ if (expect_false ((cnt) > (cur))) \ { \ ecb_unused int ocur_ = (cur); \ (base) = (type *)array_realloc \ (sizeof (type), (base), &(cur), (cnt)); \ init ((base) + (ocur_), (cur) - ocur_); \ } #if 0 #define array_slim(type,stem) \ if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ { \ stem ## max = array_roundsize (stem ## cnt >> 1); \ base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ } #endif #define array_free(stem, idx) \ ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 /*****************************************************************************/ /* dummy callback for pending events */ noinline static void pendingcb (EV_P_ ev_prepare *w, int revents) { } noinline void ev_feed_event (EV_P_ void *w, int revents) EV_THROW { W w_ = (W)w; int pri = ABSPRI (w_); if (expect_false (w_->pending)) pendings [pri][w_->pending - 1].events |= revents; else { w_->pending = ++pendingcnt [pri]; array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); pendings [pri][w_->pending - 1].w = w_; pendings [pri][w_->pending - 1].events = revents; } pendingpri = NUMPRI - 1; } inline_speed void feed_reverse (EV_P_ W w) { array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2); rfeeds [rfeedcnt++] = w; } inline_size void feed_reverse_done (EV_P_ int revents) { do ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents); while (rfeedcnt); } inline_speed void queue_events (EV_P_ W *events, int eventcnt, int type) { int i; for (i = 0; i < eventcnt; ++i) ev_feed_event (EV_A_ events [i], type); } /*****************************************************************************/ inline_speed void fd_event_nocheck (EV_P_ int fd, int revents) { ANFD *anfd = anfds + fd; ev_io *w; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) { int ev = w->events & revents; if (ev) ev_feed_event (EV_A_ (W)w, ev); } } /* do not submit kernel events for fds that have reify set */ /* because that means they changed while we were polling for new events */ inline_speed void fd_event (EV_P_ int fd, int revents) { ANFD *anfd = anfds + fd; if (expect_true (!anfd->reify)) fd_event_nocheck (EV_A_ fd, revents); } void ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW { if (fd >= 0 && fd < anfdmax) fd_event_nocheck (EV_A_ fd, revents); } /* make sure the external fd watch events are in-sync */ /* with the kernel/libev internal state */ inline_size void fd_reify (EV_P) { int i; #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd; if (anfd->reify & EV__IOFDSET && anfd->head) { SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd); if (handle != anfd->handle) { unsigned long arg; assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0)); /* handle changed, but fd didn't - we need to do it in two steps */ backend_modify (EV_A_ fd, anfd->events, 0); anfd->events = 0; anfd->handle = handle; } } } #endif for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd; ev_io *w; unsigned char o_events = anfd->events; unsigned char o_reify = anfd->reify; anfd->reify = 0; /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */ { anfd->events = 0; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) anfd->events |= (unsigned char)w->events; if (o_events != anfd->events) o_reify = EV__IOFDSET; /* actually |= */ } if (o_reify & EV__IOFDSET) backend_modify (EV_A_ fd, o_events, anfd->events); } fdchangecnt = 0; } /* something about the given fd changed */ inline_size void fd_change (EV_P_ int fd, int flags) { unsigned char reify = anfds [fd].reify; anfds [fd].reify |= flags; if (expect_true (!reify)) { ++fdchangecnt; array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); fdchanges [fdchangecnt - 1] = fd; } } /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */ inline_speed ecb_cold void fd_kill (EV_P_ int fd) { ev_io *w; while ((w = (ev_io *)anfds [fd].head)) { ev_io_stop (EV_A_ w); ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); } } /* check whether the given fd is actually valid, for error recovery */ inline_size ecb_cold int fd_valid (int fd) { #ifdef _WIN32 return EV_FD_TO_WIN32_HANDLE (fd) != -1; #else return fcntl (fd, F_GETFD) != -1; #endif } /* called on EBADF to verify fds */ noinline ecb_cold static void fd_ebadf (EV_P) { int fd; for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) if (!fd_valid (fd) && errno == EBADF) fd_kill (EV_A_ fd); } /* called on ENOMEM in select/poll to kill some fds and retry */ noinline ecb_cold static void fd_enomem (EV_P) { int fd; for (fd = anfdmax; fd--; ) if (anfds [fd].events) { fd_kill (EV_A_ fd); break; } } /* usually called after fork if backend needs to re-arm all fds from scratch */ noinline static void fd_rearm_all (EV_P) { int fd; for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) { anfds [fd].events = 0; anfds [fd].emask = 0; fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY); } } /* used to prepare libev internal fd's */ /* this is not fork-safe */ inline_speed void fd_intern (int fd) { #ifdef _WIN32 unsigned long arg = 1; ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg); #else fcntl (fd, F_SETFD, FD_CLOEXEC); fcntl (fd, F_SETFL, O_NONBLOCK); #endif } /*****************************************************************************/ /* * the heap functions want a real array index. array index 0 is guaranteed to not * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives * the branching factor of the d-tree. */ /* * at the moment we allow libev the luxury of two heaps, * a small-code-size 2-heap one and a ~1.5kb larger 4-heap * which is more cache-efficient. * the difference is about 5% with 50000+ watchers. */ #if EV_USE_4HEAP #define DHEAP 4 #define HEAP0 (DHEAP - 1) /* index of first element in heap */ #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) #define UPHEAP_DONE(p,k) ((p) == (k)) /* away from the root */ inline_speed void downheap (ANHE *heap, int N, int k) { ANHE he = heap [k]; ANHE *E = heap + N + HEAP0; for (;;) { ev_tstamp minat; ANHE *minpos; ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; /* find minimum child */ if (expect_true (pos + DHEAP - 1 < E)) { /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else if (pos < E) { /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else break; if (ANHE_at (he) <= minat) break; heap [k] = *minpos; ev_active (ANHE_w (*minpos)) = k; k = minpos - heap; } heap [k] = he; ev_active (ANHE_w (he)) = k; } #else /* 4HEAP */ #define HEAP0 1 #define HPARENT(k) ((k) >> 1) #define UPHEAP_DONE(p,k) (!(p)) /* away from the root */ inline_speed void downheap (ANHE *heap, int N, int k) { ANHE he = heap [k]; for (;;) { int c = k << 1; if (c >= N + HEAP0) break; c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) ? 1 : 0; if (ANHE_at (he) <= ANHE_at (heap [c])) break; heap [k] = heap [c]; ev_active (ANHE_w (heap [k])) = k; k = c; } heap [k] = he; ev_active (ANHE_w (he)) = k; } #endif /* towards the root */ inline_speed void upheap (ANHE *heap, int k) { ANHE he = heap [k]; for (;;) { int p = HPARENT (k); if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he)) break; heap [k] = heap [p]; ev_active (ANHE_w (heap [k])) = k; k = p; } heap [k] = he; ev_active (ANHE_w (he)) = k; } /* move an element suitably so it is in a correct place */ inline_size void adjustheap (ANHE *heap, int N, int k) { if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)])) upheap (heap, k); else downheap (heap, N, k); } /* rebuild the heap: this function is used only once and executed rarely */ inline_size void reheap (ANHE *heap, int N) { int i; /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ for (i = 0; i < N; ++i) upheap (heap, i + HEAP0); } /*****************************************************************************/ /* associate signal watchers to a signal signal */ typedef struct { EV_ATOMIC_T pending; #if EV_MULTIPLICITY EV_P; #endif WL head; } ANSIG; static ANSIG signals [EV_NSIG - 1]; /*****************************************************************************/ #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE noinline ecb_cold static void evpipe_init (EV_P) { if (!ev_is_active (&pipe_w)) { int fds [2]; # if EV_USE_EVENTFD fds [0] = -1; fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC); if (fds [1] < 0 && errno == EINVAL) fds [1] = eventfd (0, 0); if (fds [1] < 0) # endif { while (pipe (fds)) ev_syserr ("(libev) error creating signal/async pipe"); fd_intern (fds [0]); } evpipe [0] = fds [0]; if (evpipe [1] < 0) evpipe [1] = fds [1]; /* first call, set write fd */ else { /* on subsequent calls, do not change evpipe [1] */ /* so that evpipe_write can always rely on its value. */ /* this branch does not do anything sensible on windows, */ /* so must not be executed on windows */ dup2 (fds [1], evpipe [1]); close (fds [1]); } fd_intern (evpipe [1]); ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ); ev_io_start (EV_A_ &pipe_w); ev_unref (EV_A); /* watcher should not keep loop alive */ } } inline_speed void evpipe_write (EV_P_ EV_ATOMIC_T *flag) { ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */ if (expect_true (*flag)) return; *flag = 1; ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */ pipe_write_skipped = 1; ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */ if (pipe_write_wanted) { int old_errno; pipe_write_skipped = 0; ECB_MEMORY_FENCE_RELEASE; old_errno = errno; /* save errno because write will clobber it */ #if EV_USE_EVENTFD if (evpipe [0] < 0) { uint64_t counter = 1; write (evpipe [1], &counter, sizeof (uint64_t)); } else #endif { #ifdef _WIN32 WSABUF buf; DWORD sent; buf.buf = (char*)&buf; buf.len = 1; WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0); #else write (evpipe [1], &(evpipe [1]), 1); #endif } errno = old_errno; } } /* called whenever the libev signal pipe */ /* got some events (signal, async) */ static void pipecb (EV_P_ ev_io *iow, int revents) { int i; if (revents & EV_READ) { #if EV_USE_EVENTFD if (evpipe [0] < 0) { uint64_t counter; read (evpipe [1], &counter, sizeof (uint64_t)); } else #endif { char dummy[4]; #ifdef _WIN32 WSABUF buf; DWORD recvd; DWORD flags = 0; buf.buf = dummy; buf.len = sizeof (dummy); WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0); #else read (evpipe [0], &dummy, sizeof (dummy)); #endif } } pipe_write_skipped = 0; ECB_MEMORY_FENCE; /* push out skipped, acquire flags */ #if EV_SIGNAL_ENABLE if (sig_pending) { sig_pending = 0; ECB_MEMORY_FENCE; for (i = EV_NSIG - 1; i--; ) if (expect_false (signals [i].pending)) ev_feed_signal_event (EV_A_ i + 1); } #endif #if EV_ASYNC_ENABLE if (async_pending) { async_pending = 0; ECB_MEMORY_FENCE; for (i = asynccnt; i--; ) if (asyncs [i]->sent) { asyncs [i]->sent = 0; ECB_MEMORY_FENCE_RELEASE; ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); } } #endif } /*****************************************************************************/ void ev_feed_signal (int signum) EV_THROW { #if EV_MULTIPLICITY EV_P; ECB_MEMORY_FENCE_ACQUIRE; EV_A = signals [signum - 1].loop; if (!EV_A) return; #endif signals [signum - 1].pending = 1; evpipe_write (EV_A_ &sig_pending); } static void ev_sighandler (int signum) { #ifdef _WIN32 signal (signum, ev_sighandler); #endif ev_feed_signal (signum); } noinline void ev_feed_signal_event (EV_P_ int signum) EV_THROW { WL w; if (expect_false (signum <= 0 || signum >= EV_NSIG)) return; --signum; #if EV_MULTIPLICITY /* it is permissible to try to feed a signal to the wrong loop */ /* or, likely more useful, feeding a signal nobody is waiting for */ if (expect_false (signals [signum].loop != EV_A)) return; #endif signals [signum].pending = 0; ECB_MEMORY_FENCE_RELEASE; for (w = signals [signum].head; w; w = w->next) ev_feed_event (EV_A_ (W)w, EV_SIGNAL); } #if EV_USE_SIGNALFD static void sigfdcb (EV_P_ ev_io *iow, int revents) { struct signalfd_siginfo si[2], *sip; /* these structs are big */ for (;;) { ssize_t res = read (sigfd, si, sizeof (si)); /* not ISO-C, as res might be -1, but works with SuS */ for (sip = si; (char *)sip < (char *)si + res; ++sip) ev_feed_signal_event (EV_A_ sip->ssi_signo); if (res < (ssize_t)sizeof (si)) break; } } #endif #endif /*****************************************************************************/ #if EV_CHILD_ENABLE static WL childs [EV_PID_HASHSIZE]; static ev_signal childev; #ifndef WIFCONTINUED # define WIFCONTINUED(status) 0 #endif /* handle a single child status event */ inline_speed void child_reap (EV_P_ int chain, int pid, int status) { ev_child *w; int traced = WIFSTOPPED (status) || WIFCONTINUED (status); for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) { if ((w->pid == pid || !w->pid) && (!traced || (w->flags & 1))) { ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ w->rpid = pid; w->rstatus = status; ev_feed_event (EV_A_ (W)w, EV_CHILD); } } } #ifndef WCONTINUED # define WCONTINUED 0 #endif /* called on sigchld etc., calls waitpid */ static void childcb (EV_P_ ev_signal *sw, int revents) { int pid, status; /* some systems define WCONTINUED but then fail to support it (linux 2.4) */ if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) if (!WCONTINUED || errno != EINVAL || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) return; /* make sure we are called again until all children have been reaped */ /* we need to do it this way so that the callback gets called before we continue */ ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); child_reap (EV_A_ pid, pid, status); if ((EV_PID_HASHSIZE) > 1) child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ } #endif /*****************************************************************************/ #if EV_USE_IOCP # include "ev_iocp.c" #endif #if EV_USE_PORT # include "ev_port.c" #endif #if EV_USE_KQUEUE # include "ev_kqueue.c" #endif #if EV_USE_EPOLL # include "ev_epoll.c" #endif #if EV_USE_POLL # include "ev_poll.c" #endif #if EV_USE_SELECT # include "ev_select.c" #endif ecb_cold int ev_version_major (void) EV_THROW { return EV_VERSION_MAJOR; } ecb_cold int ev_version_minor (void) EV_THROW { return EV_VERSION_MINOR; } /* return true if we are running with elevated privileges and should ignore env variables */ inline_size ecb_cold int enable_secure (void) { #ifdef _WIN32 return 0; #else return getuid () != geteuid () || getgid () != getegid (); #endif } ecb_cold unsigned int ev_supported_backends (void) EV_THROW { unsigned int flags = 0; if (EV_USE_PORT ) flags |= EVBACKEND_PORT; if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; if (EV_USE_POLL ) flags |= EVBACKEND_POLL; if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; return flags; } ecb_cold unsigned int ev_recommended_backends (void) EV_THROW { unsigned int flags = ev_supported_backends (); #ifndef __NetBSD__ /* kqueue is borked on everything but netbsd apparently */ /* it usually doesn't work correctly on anything but sockets and pipes */ flags &= ~EVBACKEND_KQUEUE; #endif #ifdef __APPLE__ /* only select works correctly on that "unix-certified" platform */ flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ #endif #ifdef __FreeBSD__ flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */ #endif return flags; } ecb_cold unsigned int ev_embeddable_backends (void) EV_THROW { int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */ flags &= ~EVBACKEND_EPOLL; return flags; } unsigned int ev_backend (EV_P) EV_THROW { return backend; } #if EV_FEATURE_API unsigned int ev_iteration (EV_P) EV_THROW { return loop_count; } unsigned int ev_depth (EV_P) EV_THROW { return loop_depth; } void ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW { io_blocktime = interval; } void ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW { timeout_blocktime = interval; } void ev_set_userdata (EV_P_ void *data) EV_THROW { userdata = data; } void * ev_userdata (EV_P) EV_THROW { return userdata; } void ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW { invoke_cb = invoke_pending_cb; } void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW { release_cb = release; acquire_cb = acquire; } #endif /* initialise a loop structure, must be zero-initialised */ noinline ecb_cold static void loop_init (EV_P_ unsigned int flags) EV_THROW { if (!backend) { origflags = flags; #if EV_USE_REALTIME if (!have_realtime) { struct timespec ts; if (!clock_gettime (CLOCK_REALTIME, &ts)) have_realtime = 1; } #endif #if EV_USE_MONOTONIC if (!have_monotonic) { struct timespec ts; if (!clock_gettime (CLOCK_MONOTONIC, &ts)) have_monotonic = 1; } #endif /* pid check not overridable via env */ #ifndef _WIN32 if (flags & EVFLAG_FORKCHECK) curpid = getpid (); #endif if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) flags = atoi (getenv ("LIBEV_FLAGS")); ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; rtmn_diff = ev_rt_now - mn_now; #if EV_FEATURE_API invoke_cb = ev_invoke_pending; #endif io_blocktime = 0.; timeout_blocktime = 0.; backend = 0; backend_fd = -1; sig_pending = 0; #if EV_ASYNC_ENABLE async_pending = 0; #endif pipe_write_skipped = 0; pipe_write_wanted = 0; evpipe [0] = -1; evpipe [1] = -1; #if EV_USE_INOTIFY fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2; #endif #if EV_USE_SIGNALFD sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1; #endif if (!(flags & EVBACKEND_MASK)) flags |= ev_recommended_backends (); #if EV_USE_IOCP if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags); #endif #if EV_USE_PORT if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); #endif #if EV_USE_KQUEUE if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); #endif #if EV_USE_EPOLL if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); #endif #if EV_USE_POLL if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); #endif #if EV_USE_SELECT if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); #endif ev_prepare_init (&pending_w, pendingcb); #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE ev_init (&pipe_w, pipecb); ev_set_priority (&pipe_w, EV_MAXPRI); #endif } } /* free up a loop structure */ ecb_cold void ev_loop_destroy (EV_P) { int i; #if EV_MULTIPLICITY /* mimic free (0) */ if (!EV_A) return; #endif #if EV_CLEANUP_ENABLE /* queue cleanup watchers (and execute them) */ if (expect_false (cleanupcnt)) { queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP); EV_INVOKE_PENDING; } #endif #if EV_CHILD_ENABLE if (ev_is_default_loop (EV_A) && ev_is_active (&childev)) { ev_ref (EV_A); /* child watcher */ ev_signal_stop (EV_A_ &childev); } #endif if (ev_is_active (&pipe_w)) { /*ev_ref (EV_A);*/ /*ev_io_stop (EV_A_ &pipe_w);*/ if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]); if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]); } #if EV_USE_SIGNALFD if (ev_is_active (&sigfd_w)) close (sigfd); #endif #if EV_USE_INOTIFY if (fs_fd >= 0) close (fs_fd); #endif if (backend_fd >= 0) close (backend_fd); #if EV_USE_IOCP if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A); #endif #if EV_USE_PORT if (backend == EVBACKEND_PORT ) port_destroy (EV_A); #endif #if EV_USE_KQUEUE if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); #endif #if EV_USE_EPOLL if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); #endif #if EV_USE_POLL if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); #endif #if EV_USE_SELECT if (backend == EVBACKEND_SELECT) select_destroy (EV_A); #endif for (i = NUMPRI; i--; ) { array_free (pending, [i]); #if EV_IDLE_ENABLE array_free (idle, [i]); #endif } ev_free (anfds); anfds = 0; anfdmax = 0; /* have to use the microsoft-never-gets-it-right macro */ array_free (rfeed, EMPTY); array_free (fdchange, EMPTY); array_free (timer, EMPTY); #if EV_PERIODIC_ENABLE array_free (periodic, EMPTY); #endif #if EV_FORK_ENABLE array_free (fork, EMPTY); #endif #if EV_CLEANUP_ENABLE array_free (cleanup, EMPTY); #endif array_free (prepare, EMPTY); array_free (check, EMPTY); #if EV_ASYNC_ENABLE array_free (async, EMPTY); #endif backend = 0; #if EV_MULTIPLICITY if (ev_is_default_loop (EV_A)) #endif ev_default_loop_ptr = 0; #if EV_MULTIPLICITY else ev_free (EV_A); #endif } #if EV_USE_INOTIFY inline_size void infy_fork (EV_P); #endif inline_size void loop_fork (EV_P) { #if EV_USE_PORT if (backend == EVBACKEND_PORT ) port_fork (EV_A); #endif #if EV_USE_KQUEUE if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); #endif #if EV_USE_EPOLL if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); #endif #if EV_USE_INOTIFY infy_fork (EV_A); #endif #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE if (ev_is_active (&pipe_w) && postfork != 2) { /* pipe_write_wanted must be false now, so modifying fd vars should be safe */ ev_ref (EV_A); ev_io_stop (EV_A_ &pipe_w); if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]); evpipe_init (EV_A); /* iterate over everything, in case we missed something before */ ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); } #endif postfork = 0; } #if EV_MULTIPLICITY ecb_cold struct ev_loop * ev_loop_new (unsigned int flags) EV_THROW { EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); memset (EV_A, 0, sizeof (struct ev_loop)); loop_init (EV_A_ flags); if (ev_backend (EV_A)) return EV_A; ev_free (EV_A); return 0; } #endif /* multiplicity */ #if EV_VERIFY noinline ecb_cold static void verify_watcher (EV_P_ W w) { assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); if (w->pending) assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); } noinline ecb_cold static void verify_heap (EV_P_ ANHE *heap, int N) { int i; for (i = HEAP0; i < N + HEAP0; ++i) { assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); verify_watcher (EV_A_ (W)ANHE_w (heap [i])); } } noinline ecb_cold static void array_verify (EV_P_ W *ws, int cnt) { while (cnt--) { assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); verify_watcher (EV_A_ ws [cnt]); } } #endif #if EV_FEATURE_API void ecb_cold ev_verify (EV_P) EV_THROW { #if EV_VERIFY int i; WL w, w2; assert (activecnt >= -1); assert (fdchangemax >= fdchangecnt); for (i = 0; i < fdchangecnt; ++i) assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); assert (anfdmax >= 0); for (i = 0; i < anfdmax; ++i) { int j = 0; for (w = w2 = anfds [i].head; w; w = w->next) { verify_watcher (EV_A_ (W)w); if (j++ & 1) { assert (("libev: io watcher list contains a loop", w != w2)); w2 = w2->next; } assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); } } assert (timermax >= timercnt); verify_heap (EV_A_ timers, timercnt); #if EV_PERIODIC_ENABLE assert (periodicmax >= periodiccnt); verify_heap (EV_A_ periodics, periodiccnt); #endif for (i = NUMPRI; i--; ) { assert (pendingmax [i] >= pendingcnt [i]); #if EV_IDLE_ENABLE assert (idleall >= 0); assert (idlemax [i] >= idlecnt [i]); array_verify (EV_A_ (W *)idles [i], idlecnt [i]); #endif } #if EV_FORK_ENABLE assert (forkmax >= forkcnt); array_verify (EV_A_ (W *)forks, forkcnt); #endif #if EV_CLEANUP_ENABLE assert (cleanupmax >= cleanupcnt); array_verify (EV_A_ (W *)cleanups, cleanupcnt); #endif #if EV_ASYNC_ENABLE assert (asyncmax >= asynccnt); array_verify (EV_A_ (W *)asyncs, asynccnt); #endif #if EV_PREPARE_ENABLE assert (preparemax >= preparecnt); array_verify (EV_A_ (W *)prepares, preparecnt); #endif #if EV_CHECK_ENABLE assert (checkmax >= checkcnt); array_verify (EV_A_ (W *)checks, checkcnt); #endif # if 0 #if EV_CHILD_ENABLE for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) for (signum = EV_NSIG; signum--; ) if (signals [signum].pending) #endif # endif #endif } #endif #if EV_MULTIPLICITY ecb_cold struct ev_loop * #else int #endif ev_default_loop (unsigned int flags) EV_THROW { if (!ev_default_loop_ptr) { #if EV_MULTIPLICITY EV_P = ev_default_loop_ptr = &default_loop_struct; #else ev_default_loop_ptr = 1; #endif loop_init (EV_A_ flags); if (ev_backend (EV_A)) { #if EV_CHILD_ENABLE ev_signal_init (&childev, childcb, SIGCHLD); ev_set_priority (&childev, EV_MAXPRI); ev_signal_start (EV_A_ &childev); ev_unref (EV_A); /* child watcher should not keep loop alive */ #endif } else ev_default_loop_ptr = 0; } return ev_default_loop_ptr; } void ev_loop_fork (EV_P) EV_THROW { postfork = 1; } /*****************************************************************************/ void ev_invoke (EV_P_ void *w, int revents) { EV_CB_INVOKE ((W)w, revents); } unsigned int ev_pending_count (EV_P) EV_THROW { int pri; unsigned int count = 0; for (pri = NUMPRI; pri--; ) count += pendingcnt [pri]; return count; } noinline void ev_invoke_pending (EV_P) { pendingpri = NUMPRI; while (pendingpri) /* pendingpri possibly gets modified in the inner loop */ { --pendingpri; while (pendingcnt [pendingpri]) { ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri]; p->w->pending = 0; EV_CB_INVOKE (p->w, p->events); EV_FREQUENT_CHECK; } } } #if EV_IDLE_ENABLE /* make idle watchers pending. this handles the "call-idle */ /* only when higher priorities are idle" logic */ inline_size void idle_reify (EV_P) { if (expect_false (idleall)) { int pri; for (pri = NUMPRI; pri--; ) { if (pendingcnt [pri]) break; if (idlecnt [pri]) { queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); break; } } } } #endif /* make timers pending */ inline_size void timers_reify (EV_P) { EV_FREQUENT_CHECK; if (timercnt && ANHE_at (timers [HEAP0]) < mn_now) { do { ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */ if (w->repeat) { ev_at (w) += w->repeat; if (ev_at (w) < mn_now) ev_at (w) = mn_now; assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); ANHE_at_cache (timers [HEAP0]); downheap (timers, timercnt, HEAP0); } else ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK; feed_reverse (EV_A_ (W)w); } while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); feed_reverse_done (EV_A_ EV_TIMER); } } #if EV_PERIODIC_ENABLE noinline static void periodic_recalc (EV_P_ ev_periodic *w) { ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL; ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval); /* the above almost always errs on the low side */ while (at <= ev_rt_now) { ev_tstamp nat = at + w->interval; /* when resolution fails us, we use ev_rt_now */ if (expect_false (nat == at)) { at = ev_rt_now; break; } at = nat; } ev_at (w) = at; } /* make periodics pending */ inline_size void periodics_reify (EV_P) { EV_FREQUENT_CHECK; while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) { do { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */ if (w->reschedule_cb) { ev_at (w) = w->reschedule_cb (w, ev_rt_now); assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else if (w->interval) { periodic_recalc (EV_A_ w); ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK; feed_reverse (EV_A_ (W)w); } while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now); feed_reverse_done (EV_A_ EV_PERIODIC); } } /* simply recalculate all periodics */ /* TODO: maybe ensure that at least one event happens when jumping forward? */ noinline ecb_cold static void periodics_reschedule (EV_P) { int i; /* adjust periodics after time jump */ for (i = HEAP0; i < periodiccnt + HEAP0; ++i) { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) periodic_recalc (EV_A_ w); ANHE_at_cache (periodics [i]); } reheap (periodics, periodiccnt); } #endif /* adjust all timers by a given offset */ noinline ecb_cold static void timers_reschedule (EV_P_ ev_tstamp adjust) { int i; for (i = 0; i < timercnt; ++i) { ANHE *he = timers + i + HEAP0; ANHE_w (*he)->at += adjust; ANHE_at_cache (*he); } } /* fetch new monotonic and realtime times from the kernel */ /* also detect if there was a timejump, and act accordingly */ inline_speed void time_update (EV_P_ ev_tstamp max_block) { #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { int i; ev_tstamp odiff = rtmn_diff; mn_now = get_clock (); /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ /* interpolate in the meantime */ if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) { ev_rt_now = rtmn_diff + mn_now; return; } now_floor = mn_now; ev_rt_now = ev_time (); /* loop a few times, before making important decisions. * on the choice of "4": one iteration isn't enough, * in case we get preempted during the calls to * ev_time and get_clock. a second call is almost guaranteed * to succeed in that case, though. and looping a few more times * doesn't hurt either as we only do this on time-jumps or * in the unlikely event of having been preempted here. */ for (i = 4; --i; ) { ev_tstamp diff; rtmn_diff = ev_rt_now - mn_now; diff = odiff - rtmn_diff; if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP)) return; /* all is well */ ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; } /* no timer adjustment, as the monotonic clock doesn't jump */ /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ # if EV_PERIODIC_ENABLE periodics_reschedule (EV_A); # endif } else #endif { ev_rt_now = ev_time (); if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) { /* adjust timers. this is easy, as the offset is the same for all of them */ timers_reschedule (EV_A_ ev_rt_now - mn_now); #if EV_PERIODIC_ENABLE periodics_reschedule (EV_A); #endif } mn_now = ev_rt_now; } } int ev_run (EV_P_ int flags) { #if EV_FEATURE_API ++loop_depth; #endif assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE)); loop_done = EVBREAK_CANCEL; EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */ do { #if EV_VERIFY >= 2 ev_verify (EV_A); #endif #ifndef _WIN32 if (expect_false (curpid)) /* penalise the forking check even more */ if (expect_false (getpid () != curpid)) { curpid = getpid (); postfork = 1; } #endif #if EV_FORK_ENABLE /* we might have forked, so queue fork handlers */ if (expect_false (postfork)) if (forkcnt) { queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); EV_INVOKE_PENDING; } #endif #if EV_PREPARE_ENABLE /* queue prepare watchers (and execute them) */ if (expect_false (preparecnt)) { queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); EV_INVOKE_PENDING; } #endif if (expect_false (loop_done)) break; /* we might have forked, so reify kernel state if necessary */ if (expect_false (postfork)) loop_fork (EV_A); /* update fd-related kernel structures */ fd_reify (EV_A); /* calculate blocking time */ { ev_tstamp waittime = 0.; ev_tstamp sleeptime = 0.; /* remember old timestamp for io_blocktime calculation */ ev_tstamp prev_mn_now = mn_now; /* update time to cancel out callback processing overhead */ time_update (EV_A_ 1e100); /* from now on, we want a pipe-wake-up */ pipe_write_wanted = 1; ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */ if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped))) { waittime = MAX_BLOCKTIME; if (timercnt) { ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now; if (waittime > to) waittime = to; } #if EV_PERIODIC_ENABLE if (periodiccnt) { ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now; if (waittime > to) waittime = to; } #endif /* don't let timeouts decrease the waittime below timeout_blocktime */ if (expect_false (waittime < timeout_blocktime)) waittime = timeout_blocktime; /* at this point, we NEED to wait, so we have to ensure */ /* to pass a minimum nonzero value to the backend */ if (expect_false (waittime < backend_mintime)) waittime = backend_mintime; /* extra check because io_blocktime is commonly 0 */ if (expect_false (io_blocktime)) { sleeptime = io_blocktime - (mn_now - prev_mn_now); if (sleeptime > waittime - backend_mintime) sleeptime = waittime - backend_mintime; if (expect_true (sleeptime > 0.)) { ev_sleep (sleeptime); waittime -= sleeptime; } } } #if EV_FEATURE_API ++loop_count; #endif assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */ backend_poll (EV_A_ waittime); assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */ pipe_write_wanted = 0; /* just an optimisation, no fence needed */ ECB_MEMORY_FENCE_ACQUIRE; if (pipe_write_skipped) { assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w))); ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); } /* update ev_rt_now, do magic */ time_update (EV_A_ waittime + sleeptime); } /* queue pending timers and reschedule them */ timers_reify (EV_A); /* relative timers called last */ #if EV_PERIODIC_ENABLE periodics_reify (EV_A); /* absolute timers called first */ #endif #if EV_IDLE_ENABLE /* queue idle watchers unless other events are pending */ idle_reify (EV_A); #endif #if EV_CHECK_ENABLE /* queue check watchers, to be executed first */ if (expect_false (checkcnt)) queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); #endif EV_INVOKE_PENDING; } while (expect_true ( activecnt && !loop_done && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT)) )); if (loop_done == EVBREAK_ONE) loop_done = EVBREAK_CANCEL; #if EV_FEATURE_API --loop_depth; #endif return activecnt; } void ev_break (EV_P_ int how) EV_THROW { loop_done = how; } void ev_ref (EV_P) EV_THROW { ++activecnt; } void ev_unref (EV_P) EV_THROW { --activecnt; } void ev_now_update (EV_P) EV_THROW { time_update (EV_A_ 1e100); } void ev_suspend (EV_P) EV_THROW { ev_now_update (EV_A); } void ev_resume (EV_P) EV_THROW { ev_tstamp mn_prev = mn_now; ev_now_update (EV_A); timers_reschedule (EV_A_ mn_now - mn_prev); #if EV_PERIODIC_ENABLE /* TODO: really do this? */ periodics_reschedule (EV_A); #endif } /*****************************************************************************/ /* singly-linked list management, used when the expected list length is short */ inline_size void wlist_add (WL *head, WL elem) { elem->next = *head; *head = elem; } inline_size void wlist_del (WL *head, WL elem) { while (*head) { if (expect_true (*head == elem)) { *head = elem->next; break; } head = &(*head)->next; } } /* internal, faster, version of ev_clear_pending */ inline_speed void clear_pending (EV_P_ W w) { if (w->pending) { pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w; w->pending = 0; } } int ev_clear_pending (EV_P_ void *w) EV_THROW { W w_ = (W)w; int pending = w_->pending; if (expect_true (pending)) { ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; p->w = (W)&pending_w; w_->pending = 0; return p->events; } else return 0; } inline_size void pri_adjust (EV_P_ W w) { int pri = ev_priority (w); pri = pri < EV_MINPRI ? EV_MINPRI : pri; pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; ev_set_priority (w, pri); } inline_speed void ev_start (EV_P_ W w, int active) { pri_adjust (EV_A_ w); w->active = active; ev_ref (EV_A); } inline_size void ev_stop (EV_P_ W w) { ev_unref (EV_A); w->active = 0; } /*****************************************************************************/ noinline void ev_io_start (EV_P_ ev_io *w) EV_THROW { int fd = w->fd; if (expect_false (ev_is_active (w))) return; assert (("libev: ev_io_start called with negative fd", fd >= 0)); assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1); array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); wlist_add (&anfds[fd].head, (WL)w); /* common bug, apparently */ assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w)); fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY); w->events &= ~EV__IOFDSET; EV_FREQUENT_CHECK; } noinline void ev_io_stop (EV_P_ ev_io *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); EV_FREQUENT_CHECK; wlist_del (&anfds[w->fd].head, (WL)w); ev_stop (EV_A_ (W)w); fd_change (EV_A_ w->fd, EV_ANFD_REIFY); EV_FREQUENT_CHECK; } noinline void ev_timer_start (EV_P_ ev_timer *w) EV_THROW { if (expect_false (ev_is_active (w))) return; ev_at (w) += mn_now; assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); EV_FREQUENT_CHECK; ++timercnt; ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); ANHE_w (timers [ev_active (w)]) = (WT)w; ANHE_at_cache (timers [ev_active (w)]); upheap (timers, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ } noinline void ev_timer_stop (EV_P_ ev_timer *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); --timercnt; if (expect_true (active < timercnt + HEAP0)) { timers [active] = timers [timercnt + HEAP0]; adjustheap (timers, timercnt, active); } } ev_at (w) -= mn_now; ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } noinline void ev_timer_again (EV_P_ ev_timer *w) EV_THROW { EV_FREQUENT_CHECK; clear_pending (EV_A_ (W)w); if (ev_is_active (w)) { if (w->repeat) { ev_at (w) = mn_now + w->repeat; ANHE_at_cache (timers [ev_active (w)]); adjustheap (timers, timercnt, ev_active (w)); } else ev_timer_stop (EV_A_ w); } else if (w->repeat) { ev_at (w) = w->repeat; ev_timer_start (EV_A_ w); } EV_FREQUENT_CHECK; } ev_tstamp ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW { return ev_at (w) - (ev_is_active (w) ? mn_now : 0.); } #if EV_PERIODIC_ENABLE noinline void ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW { if (expect_false (ev_is_active (w))) return; if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) { assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); periodic_recalc (EV_A_ w); } else ev_at (w) = w->offset; EV_FREQUENT_CHECK; ++periodiccnt; ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); ANHE_w (periodics [ev_active (w)]) = (WT)w; ANHE_at_cache (periodics [ev_active (w)]); upheap (periodics, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ } noinline void ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); --periodiccnt; if (expect_true (active < periodiccnt + HEAP0)) { periodics [active] = periodics [periodiccnt + HEAP0]; adjustheap (periodics, periodiccnt, active); } } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } noinline void ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW { /* TODO: use adjustheap and recalculation */ ev_periodic_stop (EV_A_ w); ev_periodic_start (EV_A_ w); } #endif #ifndef SA_RESTART # define SA_RESTART 0 #endif #if EV_SIGNAL_ENABLE noinline void ev_signal_start (EV_P_ ev_signal *w) EV_THROW { if (expect_false (ev_is_active (w))) return; assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG)); #if EV_MULTIPLICITY assert (("libev: a signal must not be attached to two different loops", !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop)); signals [w->signum - 1].loop = EV_A; ECB_MEMORY_FENCE_RELEASE; #endif EV_FREQUENT_CHECK; #if EV_USE_SIGNALFD if (sigfd == -2) { sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC); if (sigfd < 0 && errno == EINVAL) sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */ if (sigfd >= 0) { fd_intern (sigfd); /* doing it twice will not hurt */ sigemptyset (&sigfd_set); ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ); ev_set_priority (&sigfd_w, EV_MAXPRI); ev_io_start (EV_A_ &sigfd_w); ev_unref (EV_A); /* signalfd watcher should not keep loop alive */ } } if (sigfd >= 0) { /* TODO: check .head */ sigaddset (&sigfd_set, w->signum); sigprocmask (SIG_BLOCK, &sigfd_set, 0); signalfd (sigfd, &sigfd_set, 0); } #endif ev_start (EV_A_ (W)w, 1); wlist_add (&signals [w->signum - 1].head, (WL)w); if (!((WL)w)->next) # if EV_USE_SIGNALFD if (sigfd < 0) /*TODO*/ # endif { # ifdef _WIN32 evpipe_init (EV_A); signal (w->signum, ev_sighandler); # else struct sigaction sa; evpipe_init (EV_A); sa.sa_handler = ev_sighandler; sigfillset (&sa.sa_mask); sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ sigaction (w->signum, &sa, 0); if (origflags & EVFLAG_NOSIGMASK) { sigemptyset (&sa.sa_mask); sigaddset (&sa.sa_mask, w->signum); sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0); } #endif } EV_FREQUENT_CHECK; } noinline void ev_signal_stop (EV_P_ ev_signal *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; wlist_del (&signals [w->signum - 1].head, (WL)w); ev_stop (EV_A_ (W)w); if (!signals [w->signum - 1].head) { #if EV_MULTIPLICITY signals [w->signum - 1].loop = 0; /* unattach from signal */ #endif #if EV_USE_SIGNALFD if (sigfd >= 0) { sigset_t ss; sigemptyset (&ss); sigaddset (&ss, w->signum); sigdelset (&sigfd_set, w->signum); signalfd (sigfd, &sigfd_set, 0); sigprocmask (SIG_UNBLOCK, &ss, 0); } else #endif signal (w->signum, SIG_DFL); } EV_FREQUENT_CHECK; } #endif #if EV_CHILD_ENABLE void ev_child_start (EV_P_ ev_child *w) EV_THROW { #if EV_MULTIPLICITY assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); #endif if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1); wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); EV_FREQUENT_CHECK; } void ev_child_stop (EV_P_ ev_child *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_STAT_ENABLE # ifdef _WIN32 # undef lstat # define lstat(a,b) _stati64 (a,b) # endif #define DEF_STAT_INTERVAL 5.0074891 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ #define MIN_STAT_INTERVAL 0.1074891 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents); #if EV_USE_INOTIFY /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */ # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX) noinline static void infy_add (EV_P_ ev_stat *w) { w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO | IN_DONT_FOLLOW | IN_MASK_ADD); if (w->wd >= 0) { struct statfs sfs; /* now local changes will be tracked by inotify, but remote changes won't */ /* unless the filesystem is known to be local, we therefore still poll */ /* also do poll on <2.6.25, but with normal frequency */ if (!fs_2625) w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; else if (!statfs (w->path, &sfs) && (sfs.f_type == 0x1373 /* devfs */ || sfs.f_type == 0x4006 /* fat */ || sfs.f_type == 0x4d44 /* msdos */ || sfs.f_type == 0xEF53 /* ext2/3 */ || sfs.f_type == 0x72b6 /* jffs2 */ || sfs.f_type == 0x858458f6 /* ramfs */ || sfs.f_type == 0x5346544e /* ntfs */ || sfs.f_type == 0x3153464a /* jfs */ || sfs.f_type == 0x9123683e /* btrfs */ || sfs.f_type == 0x52654973 /* reiser3 */ || sfs.f_type == 0x01021994 /* tmpfs */ || sfs.f_type == 0x58465342 /* xfs */)) w->timer.repeat = 0.; /* filesystem is local, kernel new enough */ else w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */ } else { /* can't use inotify, continue to stat */ w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; /* if path is not there, monitor some parent directory for speedup hints */ /* note that exceeding the hardcoded path limit is not a correctness issue, */ /* but an efficiency issue only */ if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) { char path [4096]; strcpy (path, w->path); do { int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); char *pend = strrchr (path, '/'); if (!pend || pend == path) break; *pend = 0; w->wd = inotify_add_watch (fs_fd, path, mask); } while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); } } if (w->wd >= 0) wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); /* now re-arm timer, if required */ if (ev_is_active (&w->timer)) ev_ref (EV_A); ev_timer_again (EV_A_ &w->timer); if (ev_is_active (&w->timer)) ev_unref (EV_A); } noinline static void infy_del (EV_P_ ev_stat *w) { int slot; int wd = w->wd; if (wd < 0) return; w->wd = -2; slot = wd & ((EV_INOTIFY_HASHSIZE) - 1); wlist_del (&fs_hash [slot].head, (WL)w); /* remove this watcher, if others are watching it, they will rearm */ inotify_rm_watch (fs_fd, wd); } noinline static void infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) { if (slot < 0) /* overflow, need to check for all hash slots */ for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) infy_wd (EV_A_ slot, wd, ev); else { WL w_; for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; ) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us remove this watcher and all before it */ if (w->wd == wd || wd == -1) { if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) { wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); w->wd = -1; infy_add (EV_A_ w); /* re-add, no matter what */ } stat_timer_cb (EV_A_ &w->timer, 0); } } } } static void infy_cb (EV_P_ ev_io *w, int revents) { char buf [EV_INOTIFY_BUFSIZE]; int ofs; int len = read (fs_fd, buf, sizeof (buf)); for (ofs = 0; ofs < len; ) { struct inotify_event *ev = (struct inotify_event *)(buf + ofs); infy_wd (EV_A_ ev->wd, ev->wd, ev); ofs += sizeof (struct inotify_event) + ev->len; } } inline_size ecb_cold void ev_check_2625 (EV_P) { /* kernels < 2.6.25 are borked * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html */ if (ev_linux_version () < 0x020619) return; fs_2625 = 1; } inline_size int infy_newfd (void) { #if defined IN_CLOEXEC && defined IN_NONBLOCK int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK); if (fd >= 0) return fd; #endif return inotify_init (); } inline_size void infy_init (EV_P) { if (fs_fd != -2) return; fs_fd = -1; ev_check_2625 (EV_A); fs_fd = infy_newfd (); if (fs_fd >= 0) { fd_intern (fs_fd); ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); ev_set_priority (&fs_w, EV_MAXPRI); ev_io_start (EV_A_ &fs_w); ev_unref (EV_A); } } inline_size void infy_fork (EV_P) { int slot; if (fs_fd < 0) return; ev_ref (EV_A); ev_io_stop (EV_A_ &fs_w); close (fs_fd); fs_fd = infy_newfd (); if (fs_fd >= 0) { fd_intern (fs_fd); ev_io_set (&fs_w, fs_fd, EV_READ); ev_io_start (EV_A_ &fs_w); ev_unref (EV_A); } for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) { WL w_ = fs_hash [slot].head; fs_hash [slot].head = 0; while (w_) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us add this watcher */ w->wd = -1; if (fs_fd >= 0) infy_add (EV_A_ w); /* re-add, no matter what */ else { w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; if (ev_is_active (&w->timer)) ev_ref (EV_A); ev_timer_again (EV_A_ &w->timer); if (ev_is_active (&w->timer)) ev_unref (EV_A); } } } } #endif #ifdef _WIN32 # define EV_LSTAT(p,b) _stati64 (p, b) #else # define EV_LSTAT(p,b) lstat (p, b) #endif void ev_stat_stat (EV_P_ ev_stat *w) EV_THROW { if (lstat (w->path, &w->attr) < 0) w->attr.st_nlink = 0; else if (!w->attr.st_nlink) w->attr.st_nlink = 1; } noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents) { ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); ev_statdata prev = w->attr; ev_stat_stat (EV_A_ w); /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ if ( prev.st_dev != w->attr.st_dev || prev.st_ino != w->attr.st_ino || prev.st_mode != w->attr.st_mode || prev.st_nlink != w->attr.st_nlink || prev.st_uid != w->attr.st_uid || prev.st_gid != w->attr.st_gid || prev.st_rdev != w->attr.st_rdev || prev.st_size != w->attr.st_size || prev.st_atime != w->attr.st_atime || prev.st_mtime != w->attr.st_mtime || prev.st_ctime != w->attr.st_ctime ) { /* we only update w->prev on actual differences */ /* in case we test more often than invoke the callback, */ /* to ensure that prev is always different to attr */ w->prev = prev; #if EV_USE_INOTIFY if (fs_fd >= 0) { infy_del (EV_A_ w); infy_add (EV_A_ w); ev_stat_stat (EV_A_ w); /* avoid race... */ } #endif ev_feed_event (EV_A_ w, EV_STAT); } } void ev_stat_start (EV_P_ ev_stat *w) EV_THROW { if (expect_false (ev_is_active (w))) return; ev_stat_stat (EV_A_ w); if (w->interval < MIN_STAT_INTERVAL && w->interval) w->interval = MIN_STAT_INTERVAL; ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL); ev_set_priority (&w->timer, ev_priority (w)); #if EV_USE_INOTIFY infy_init (EV_A); if (fs_fd >= 0) infy_add (EV_A_ w); else #endif { ev_timer_again (EV_A_ &w->timer); ev_unref (EV_A); } ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK; } void ev_stat_stop (EV_P_ ev_stat *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; #if EV_USE_INOTIFY infy_del (EV_A_ w); #endif if (ev_is_active (&w->timer)) { ev_ref (EV_A); ev_timer_stop (EV_A_ &w->timer); } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_IDLE_ENABLE void ev_idle_start (EV_P_ ev_idle *w) EV_THROW { if (expect_false (ev_is_active (w))) return; pri_adjust (EV_A_ (W)w); EV_FREQUENT_CHECK; { int active = ++idlecnt [ABSPRI (w)]; ++idleall; ev_start (EV_A_ (W)w, active); array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); idles [ABSPRI (w)][active - 1] = w; } EV_FREQUENT_CHECK; } void ev_idle_stop (EV_P_ ev_idle *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; ev_active (idles [ABSPRI (w)][active - 1]) = active; ev_stop (EV_A_ (W)w); --idleall; } EV_FREQUENT_CHECK; } #endif #if EV_PREPARE_ENABLE void ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++preparecnt); array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); prepares [preparecnt - 1] = w; EV_FREQUENT_CHECK; } void ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); prepares [active - 1] = prepares [--preparecnt]; ev_active (prepares [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_CHECK_ENABLE void ev_check_start (EV_P_ ev_check *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++checkcnt); array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); checks [checkcnt - 1] = w; EV_FREQUENT_CHECK; } void ev_check_stop (EV_P_ ev_check *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); checks [active - 1] = checks [--checkcnt]; ev_active (checks [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_EMBED_ENABLE noinline void ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW { ev_run (w->other, EVRUN_NOWAIT); } static void embed_io_cb (EV_P_ ev_io *io, int revents) { ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); if (ev_cb (w)) ev_feed_event (EV_A_ (W)w, EV_EMBED); else ev_run (w->other, EVRUN_NOWAIT); } static void embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) { ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); { EV_P = w->other; while (fdchangecnt) { fd_reify (EV_A); ev_run (EV_A_ EVRUN_NOWAIT); } } } static void embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) { ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); ev_embed_stop (EV_A_ w); { EV_P = w->other; ev_loop_fork (EV_A); ev_run (EV_A_ EVRUN_NOWAIT); } ev_embed_start (EV_A_ w); } #if 0 static void embed_idle_cb (EV_P_ ev_idle *idle, int revents) { ev_idle_stop (EV_A_ idle); } #endif void ev_embed_start (EV_P_ ev_embed *w) EV_THROW { if (expect_false (ev_is_active (w))) return; { EV_P = w->other; assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); } EV_FREQUENT_CHECK; ev_set_priority (&w->io, ev_priority (w)); ev_io_start (EV_A_ &w->io); ev_prepare_init (&w->prepare, embed_prepare_cb); ev_set_priority (&w->prepare, EV_MINPRI); ev_prepare_start (EV_A_ &w->prepare); ev_fork_init (&w->fork, embed_fork_cb); ev_fork_start (EV_A_ &w->fork); /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK; } void ev_embed_stop (EV_P_ ev_embed *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_io_stop (EV_A_ &w->io); ev_prepare_stop (EV_A_ &w->prepare); ev_fork_stop (EV_A_ &w->fork); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_FORK_ENABLE void ev_fork_start (EV_P_ ev_fork *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++forkcnt); array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); forks [forkcnt - 1] = w; EV_FREQUENT_CHECK; } void ev_fork_stop (EV_P_ ev_fork *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); forks [active - 1] = forks [--forkcnt]; ev_active (forks [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_CLEANUP_ENABLE void ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++cleanupcnt); array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2); cleanups [cleanupcnt - 1] = w; /* cleanup watchers should never keep a refcount on the loop */ ev_unref (EV_A); EV_FREQUENT_CHECK; } void ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_ref (EV_A); { int active = ev_active (w); cleanups [active - 1] = cleanups [--cleanupcnt]; ev_active (cleanups [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_ASYNC_ENABLE void ev_async_start (EV_P_ ev_async *w) EV_THROW { if (expect_false (ev_is_active (w))) return; w->sent = 0; evpipe_init (EV_A); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++asynccnt); array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); asyncs [asynccnt - 1] = w; EV_FREQUENT_CHECK; } void ev_async_stop (EV_P_ ev_async *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); asyncs [active - 1] = asyncs [--asynccnt]; ev_active (asyncs [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } void ev_async_send (EV_P_ ev_async *w) EV_THROW { w->sent = 1; evpipe_write (EV_A_ &async_pending); } #endif /*****************************************************************************/ struct ev_once { ev_io io; ev_timer to; void (*cb)(int revents, void *arg); void *arg; }; static void once_cb (EV_P_ struct ev_once *once, int revents) { void (*cb)(int revents, void *arg) = once->cb; void *arg = once->arg; ev_io_stop (EV_A_ &once->io); ev_timer_stop (EV_A_ &once->to); ev_free (once); cb (revents, arg); } static void once_cb_io (EV_P_ ev_io *w, int revents) { struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)); once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to)); } static void once_cb_to (EV_P_ ev_timer *w, int revents) { struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)); once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); } void ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW { struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); if (expect_false (!once)) { cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg); return; } once->cb = cb; once->arg = arg; ev_init (&once->io, once_cb_io); if (fd >= 0) { ev_io_set (&once->io, fd, events); ev_io_start (EV_A_ &once->io); } ev_init (&once->to, once_cb_to); if (timeout >= 0.) { ev_timer_set (&once->to, timeout, 0.); ev_timer_start (EV_A_ &once->to); } } /*****************************************************************************/ #if EV_WALK_ENABLE ecb_cold void ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW { int i, j; ev_watcher_list *wl, *wn; if (types & (EV_IO | EV_EMBED)) for (i = 0; i < anfdmax; ++i) for (wl = anfds [i].head; wl; ) { wn = wl->next; #if EV_EMBED_ENABLE if (ev_cb ((ev_io *)wl) == embed_io_cb) { if (types & EV_EMBED) cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io)); } else #endif #if EV_USE_INOTIFY if (ev_cb ((ev_io *)wl) == infy_cb) ; else #endif if ((ev_io *)wl != &pipe_w) if (types & EV_IO) cb (EV_A_ EV_IO, wl); wl = wn; } if (types & (EV_TIMER | EV_STAT)) for (i = timercnt + HEAP0; i-- > HEAP0; ) #if EV_STAT_ENABLE /*TODO: timer is not always active*/ if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb) { if (types & EV_STAT) cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer)); } else #endif if (types & EV_TIMER) cb (EV_A_ EV_TIMER, ANHE_w (timers [i])); #if EV_PERIODIC_ENABLE if (types & EV_PERIODIC) for (i = periodiccnt + HEAP0; i-- > HEAP0; ) cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); #endif #if EV_IDLE_ENABLE if (types & EV_IDLE) for (j = NUMPRI; j--; ) for (i = idlecnt [j]; i--; ) cb (EV_A_ EV_IDLE, idles [j][i]); #endif #if EV_FORK_ENABLE if (types & EV_FORK) for (i = forkcnt; i--; ) if (ev_cb (forks [i]) != embed_fork_cb) cb (EV_A_ EV_FORK, forks [i]); #endif #if EV_ASYNC_ENABLE if (types & EV_ASYNC) for (i = asynccnt; i--; ) cb (EV_A_ EV_ASYNC, asyncs [i]); #endif #if EV_PREPARE_ENABLE if (types & EV_PREPARE) for (i = preparecnt; i--; ) # if EV_EMBED_ENABLE if (ev_cb (prepares [i]) != embed_prepare_cb) # endif cb (EV_A_ EV_PREPARE, prepares [i]); #endif #if EV_CHECK_ENABLE if (types & EV_CHECK) for (i = checkcnt; i--; ) cb (EV_A_ EV_CHECK, checks [i]); #endif #if EV_SIGNAL_ENABLE if (types & EV_SIGNAL) for (i = 0; i < EV_NSIG - 1; ++i) for (wl = signals [i].head; wl; ) { wn = wl->next; cb (EV_A_ EV_SIGNAL, wl); wl = wn; } #endif #if EV_CHILD_ENABLE if (types & EV_CHILD) for (i = (EV_PID_HASHSIZE); i--; ) for (wl = childs [i]; wl; ) { wn = wl->next; cb (EV_A_ EV_CHILD, wl); wl = wn; } #endif /* EV_STAT 0x00001000 /* stat data changed */ /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ } #endif #if EV_MULTIPLICITY #include "ev_wrap.h" #endif