/* * comm.cpp * * Created on: Jul 29, 2017 * Author: wangyu */ #include "common.h" #include "log.h" #include #include int about_to_exit = 0; raw_mode_t raw_mode = mode_faketcp; unordered_map raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}}; // static int random_number_fd=-1; char iptables_rule[200] = ""; // int is_client = 0, is_server = 0; program_mode_t program_mode = unset_mode; // 0 unset; 1client 2server working_mode_t working_mode = tunnel_mode; int socket_buf_size = 1024 * 1024; int init_ws() { #if defined(__MINGW32__) WORD wVersionRequested; WSADATA wsaData; int err; /* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */ wVersionRequested = MAKEWORD(2, 2); err = WSAStartup(wVersionRequested, &wsaData); if (err != 0) { /* Tell the user that we could not find a usable */ /* Winsock DLL. */ printf("WSAStartup failed with error: %d\n", err); exit(-1); } /* Confirm that the WinSock DLL supports 2.2.*/ /* Note that if the DLL supports versions greater */ /* than 2.2 in addition to 2.2, it will still return */ /* 2.2 in wVersion since that is the version we */ /* requested. */ if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) { /* Tell the user that we could not find a usable */ /* WinSock DLL. */ printf("Could not find a usable version of Winsock.dll\n"); WSACleanup(); exit(-1); } else { printf("The Winsock 2.2 dll was found okay"); } int tmp[] = {0, 100, 200, 300, 500, 800, 1000, 2000, 3000, 4000, -1}; int succ = 0; for (int i = 1; tmp[i] != -1; i++) { if (_setmaxstdio(100) == -1) break; else succ = i; } printf(", _setmaxstdio() was set to %d\n", tmp[succ]); #endif return 0; } #if defined(__MINGW32__) int inet_pton(int af, const char *src, void *dst) { struct sockaddr_storage ss; int size = sizeof(ss); char src_copy[INET6_ADDRSTRLEN + 1]; ZeroMemory(&ss, sizeof(ss)); /* stupid non-const API */ strncpy(src_copy, src, INET6_ADDRSTRLEN + 1); src_copy[INET6_ADDRSTRLEN] = 0; if (WSAStringToAddress(src_copy, af, NULL, (struct sockaddr *)&ss, &size) == 0) { switch (af) { case AF_INET: *(struct in_addr *)dst = ((struct sockaddr_in *)&ss)->sin_addr; return 1; case AF_INET6: *(struct in6_addr *)dst = ((struct sockaddr_in6 *)&ss)->sin6_addr; return 1; } } return 0; } const char *inet_ntop(int af, const void *src, char *dst, socklen_t size) { struct sockaddr_storage ss; unsigned long s = size; ZeroMemory(&ss, sizeof(ss)); ss.ss_family = af; switch (af) { case AF_INET: ((struct sockaddr_in *)&ss)->sin_addr = *(struct in_addr *)src; break; case AF_INET6: ((struct sockaddr_in6 *)&ss)->sin6_addr = *(struct in6_addr *)src; break; default: return NULL; } /* cannot direclty use &size because of strict aliasing rules */ return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0) ? dst : NULL; } char *get_sock_error() { static char buf[1000]; int e = WSAGetLastError(); wchar_t *s = NULL; FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, e, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPWSTR)&s, 0, NULL); sprintf(buf, "%d:%S", e, s); int len = strlen(buf); if (len > 0 && buf[len - 1] == '\n') buf[len - 1] = 0; LocalFree(s); return buf; } int get_sock_errno() { return WSAGetLastError(); } #else char *get_sock_error() { static char buf[1000]; sprintf(buf, "%d:%s", errno, strerror(errno)); return buf; } int get_sock_errno() { return errno; } #endif struct my_random_t { std::random_device rd; std::mt19937 gen; std::uniform_int_distribution dis64; std::uniform_int_distribution dis32; std::uniform_int_distribution dis8; my_random_t() { std::mt19937 gen_tmp(rd()); gen = gen_tmp; gen.discard(700000); // magic } u64_t gen64() { return dis64(gen); } u32_t gen32() { return dis32(gen); } unsigned char gen8() { return dis8(gen); } /*int random_number_fd; random_fd_t() { random_number_fd=open("/dev/urandom",O_RDONLY); if(random_number_fd==-1) { mylog(log_fatal,"error open /dev/urandom\n"); myexit(-1); } setnonblocking(random_number_fd); } int get_fd() { return random_number_fd; }*/ } my_random; int address_t::from_str(char *str) { clear(); char ip_addr_str[100]; u32_t port; mylog(log_info, "parsing address: %s\n", str); int is_ipv6 = 0; if (sscanf(str, "[%[^]]]:%u", ip_addr_str, &port) == 2) { mylog(log_info, "its an ipv6 adress\n"); inner.ipv6.sin6_family = AF_INET6; is_ipv6 = 1; } else if (sscanf(str, "%[^:]:%u", ip_addr_str, &port) == 2) { mylog(log_info, "its an ipv4 adress\n"); inner.ipv4.sin_family = AF_INET; } else { mylog(log_error, "failed to parse\n"); myexit(-1); } mylog(log_info, "ip_address is {%s}, port is {%u}\n", ip_addr_str, port); if (port > 65535) { mylog(log_error, "invalid port: %d\n", port); myexit(-1); } int ret = -100; if (is_ipv6) { ret = inet_pton(AF_INET6, ip_addr_str, &(inner.ipv6.sin6_addr)); inner.ipv6.sin6_port = htons(port); if (ret == 0) // 0 if address type doesnt match { mylog(log_error, "ip_addr %s is not an ipv6 address, %d\n", ip_addr_str, ret); myexit(-1); } else if (ret == 1) // inet_pton returns 1 on success { // okay } else { mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret); myexit(-1); } } else { ret = inet_pton(AF_INET, ip_addr_str, &(inner.ipv4.sin_addr)); inner.ipv4.sin_port = htons(port); if (ret == 0) { mylog(log_error, "ip_addr %s is not an ipv4 address, %d\n", ip_addr_str, ret); myexit(-1); } else if (ret == 1) { // okay } else { mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret); myexit(-1); } } return 0; } int address_t::from_str_ip_only(char *str) { clear(); u32_t type; if (strchr(str, ':') == NULL) type = AF_INET; else type = AF_INET6; ((sockaddr *)&inner)->sa_family = type; int ret; if (type == AF_INET) { ret = inet_pton(type, str, &inner.ipv4.sin_addr); } else { ret = inet_pton(type, str, &inner.ipv6.sin6_addr); } if (ret == 0) // 0 if address type doesnt match { mylog(log_error, "confusion in parsing %s, %d\n", str, ret); myexit(-1); } else if (ret == 1) // inet_pton returns 1 on success { // okay } else { mylog(log_error, "ip_addr %s is invalid, %d\n", str, ret); myexit(-1); } return 0; } char *address_t::get_str() { static char res[max_addr_len]; to_str(res); return res; } void address_t::to_str(char *s) { // static char res[max_addr_len]; char ip_addr[max_addr_len]; u32_t port; const char *ret = 0; if (get_type() == AF_INET6) { ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len); port = inner.ipv6.sin6_port; } else if (get_type() == AF_INET) { ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len); port = inner.ipv4.sin_port; } else { assert(0 == 1); } if (ret == 0) // NULL on failure { mylog(log_error, "inet_ntop failed\n"); myexit(-1); } port = ntohs(port); ip_addr[max_addr_len - 1] = 0; if (get_type() == AF_INET6) { sprintf(s, "[%s]:%u", ip_addr, (u32_t)port); } else { sprintf(s, "%s:%u", ip_addr, (u32_t)port); } // return res; } char *address_t::get_ip() { char ip_addr[max_addr_len]; static char s[max_addr_len]; const char *ret = 0; if (get_type() == AF_INET6) { ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len); } else if (get_type() == AF_INET) { ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len); } else { assert(0 == 1); } if (ret == 0) // NULL on failure { mylog(log_error, "inet_ntop failed\n"); myexit(-1); } ip_addr[max_addr_len - 1] = 0; if (get_type() == AF_INET6) { sprintf(s, "%s", ip_addr); } else { sprintf(s, "%s", ip_addr); } return s; } int address_t::from_sockaddr(sockaddr *addr, socklen_t slen) { clear(); // memset(&inner,0,sizeof(inner)); if (addr->sa_family == AF_INET6) { assert(slen == sizeof(sockaddr_in6)); // inner.ipv6= *( (sockaddr_in6*) addr ); memcpy(&inner, addr, slen); } else if (addr->sa_family == AF_INET) { assert(slen == sizeof(sockaddr_in)); // inner.ipv4= *( (sockaddr_in*) addr ); memcpy(&inner, addr, slen); } else { assert(0 == 1); } return 0; } int address_t::new_connected_udp_fd() { int new_udp_fd; new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP); if (new_udp_fd < 0) { mylog(log_warn, "create udp_fd error\n"); return -1; } setnonblocking(new_udp_fd); set_buf_size(new_udp_fd, socket_buf_size); mylog(log_debug, "created new udp_fd %d\n", new_udp_fd); int ret = connect(new_udp_fd, (struct sockaddr *)&inner, get_len()); if (ret != 0) { mylog(log_warn, "udp fd connect fail %d %s\n", ret, strerror(errno)); // sock_close(new_udp_fd); close(new_udp_fd); return -1; } return new_udp_fd; } void get_fake_random_chars(char *s, int len) { char *p = s; int left = len; while (left >= (int)sizeof(u64_t)) { //*((u64_t*)p)=my_random.gen64(); //this may break strict-alias , also p may not point to a multiple of sizeof(u64_t) u64_t tmp = my_random.gen64(); memcpy(p, &tmp, sizeof(u64_t)); // so,use memcpy instead. p += sizeof(u64_t); left -= sizeof(u64_t); } if (left) { u64_t tmp = my_random.gen64(); memcpy(p, &tmp, left); } } int random_between(u32_t a, u32_t b) { if (a > b) { mylog(log_fatal, "min >max?? %d %d\n", a, b); myexit(1); } if (a == b) return a; else return a + get_fake_random_number() % (b + 1 - a); } /* u64_t get_current_time()//ms { timespec tmp_time; clock_gettime(CLOCK_MONOTONIC, &tmp_time); return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu); } u64_t get_current_time_us() { timespec tmp_time; clock_gettime(CLOCK_MONOTONIC, &tmp_time); return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu; }*/ u64_t get_current_time_us() { static u64_t value_fix = 0; static u64_t largest_value = 0; u64_t raw_value = (u64_t)(ev_time() * 1000 * 1000); u64_t fixed_value = raw_value + value_fix; if (fixed_value < largest_value) { value_fix += largest_value - fixed_value; } else { largest_value = fixed_value; } // printf("<%lld,%lld,%lld>\n",raw_value,value_fix,raw_value + value_fix); return raw_value + value_fix; // new fixed value } u64_t get_current_time() { return get_current_time_us() / 1000lu; } u64_t pack_u64(u32_t a, u32_t b) { u64_t ret = a; ret <<= 32u; ret += b; return ret; } u32_t get_u64_h(u64_t a) { return a >> 32u; } u32_t get_u64_l(u64_t a) { return (a << 32u) >> 32u; } void write_u16(char *p, u16_t w) { *(unsigned char *)(p + 1) = (w & 0xff); *(unsigned char *)(p + 0) = (w >> 8); } u16_t read_u16(char *p) { u16_t res; res = *(const unsigned char *)(p + 0); res = *(const unsigned char *)(p + 1) + (res << 8); return res; } void write_u32(char *p, u32_t l) { *(unsigned char *)(p + 3) = (unsigned char)((l >> 0) & 0xff); *(unsigned char *)(p + 2) = (unsigned char)((l >> 8) & 0xff); *(unsigned char *)(p + 1) = (unsigned char)((l >> 16) & 0xff); *(unsigned char *)(p + 0) = (unsigned char)((l >> 24) & 0xff); } u32_t read_u32(char *p) { u32_t res; res = *(const unsigned char *)(p + 0); res = *(const unsigned char *)(p + 1) + (res << 8); res = *(const unsigned char *)(p + 2) + (res << 8); res = *(const unsigned char *)(p + 3) + (res << 8); return res; } void write_u64(char *s, u64_t a) { assert(0 == 1); } u64_t read_u64(char *s) { assert(0 == 1); return 0; } char *my_ntoa(u32_t ip) { in_addr a; a.s_addr = ip; return inet_ntoa(a); } u64_t get_fake_random_number_64() { // u64_t ret; // int size=read(random_fd.get_fd(),&ret,sizeof(ret)); // if(size!=sizeof(ret)) //{ // mylog(log_fatal,"get random number failed %d\n",size); // myexit(-1); //} return my_random.gen64(); } u32_t get_fake_random_number() { // u32_t ret; // int size=read(random_fd.get_fd(),&ret,sizeof(ret)); // if(size!=sizeof(ret)) //{ // mylog(log_fatal,"get random number failed %d\n",size); // myexit(-1); // } return my_random.gen32(); } u32_t get_fake_random_number_nz() // nz for non-zero { u32_t ret = 0; while (ret == 0) { ret = get_fake_random_number(); } return ret; } /* u64_t ntoh64(u64_t a) { if(__BYTE_ORDER == __LITTLE_ENDIAN) { return __bswap_64( a); } else return a; } u64_t hton64(u64_t a) { if(__BYTE_ORDER == __LITTLE_ENDIAN) { return __bswap_64( a); } else return a; }*/ void setnonblocking(int sock) { #if !defined(__MINGW32__) int opts; opts = fcntl(sock, F_GETFL); if (opts < 0) { mylog(log_fatal, "fcntl(sock,GETFL)\n"); // perror("fcntl(sock,GETFL)"); myexit(1); } opts = opts | O_NONBLOCK; if (fcntl(sock, F_SETFL, opts) < 0) { mylog(log_fatal, "fcntl(sock,SETFL,opts)\n"); // perror("fcntl(sock,SETFL,opts)"); myexit(1); } #else int iResult; u_long iMode = 1; iResult = ioctlsocket(sock, FIONBIO, &iMode); if (iResult != NO_ERROR) printf("ioctlsocket failed with error: %d\n", iResult); #endif } /* Generic checksum calculation function */ unsigned short csum(const unsigned short *ptr, int nbytes) { long sum; unsigned short oddbyte; short answer; sum = 0; while (nbytes > 1) { sum += *ptr++; nbytes -= 2; } if (nbytes == 1) { oddbyte = 0; *((u_char *)&oddbyte) = *(u_char *)ptr; sum += oddbyte; } sum = (sum >> 16) + (sum & 0xffff); sum = sum + (sum >> 16); answer = (short)~sum; return (answer); } unsigned short tcp_csum(const pseudo_header &ph, const unsigned short *ptr, int nbytes) { // works both for big and little endian long sum; unsigned short oddbyte; short answer; sum = 0; unsigned short *tmp = (unsigned short *)&ph; for (int i = 0; i < 6; i++) { sum += *tmp++; } while (nbytes > 1) { sum += *ptr++; nbytes -= 2; } if (nbytes == 1) { oddbyte = 0; *((u_char *)&oddbyte) = *(u_char *)ptr; sum += oddbyte; } sum = (sum >> 16) + (sum & 0xffff); sum = sum + (sum >> 16); answer = (short)~sum; return (answer); } int set_buf_size(int fd, int socket_buf_size) { if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) { mylog(log_fatal, "SO_SNDBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error()); myexit(1); } if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) { mylog(log_fatal, "SO_RCVBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error()); myexit(1); } return 0; } void myexit(int a) { if (enable_log_color) printf("%s\n", RESET); // clear_iptables_rule(); exit(a); } void signal_handler(int sig) { about_to_exit = 1; // myexit(0); } /* int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len) { static char buf[buf_len]; data=buf; id_t tmp=htonl(id1); memcpy(buf,&tmp,sizeof(tmp)); tmp=htonl(id2); memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp)); tmp=htonl(id3); memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp)); len=sizeof(id_t)*3; return 0; } int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3) { if(leninner, bind_addr->get_len()) == -1) { mylog(log_fatal, "socket bind error=%s\n", get_sock_error()); // perror("socket bind error"); myexit(1); } #ifdef __linux__ if (interface_string && ::setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, interface_string, strlen(interface_string)) < 0) { mylog(log_fatal, "socket interface bind error=%s\n", get_sock_error()); // perror("socket bind error"); myexit(1); } #endif setnonblocking(fd); set_buf_size(fd, socket_buf_size); mylog(log_debug, "[%s]created new udp_fd %d\n", addr.get_str(), fd); int ret = connect(fd, (struct sockaddr *)&addr.inner, addr.get_len()); if (ret != 0) { mylog(log_warn, "[%s]fd connect fail\n", addr.get_str()); sock_close(fd); return -1; } return 0; } u32_t djb2(unsigned char *str, int len) { u32_t hash = 5381; int c; for (int i=0; i string_to_vec(const char *s, const char *sp) { vector res; string str = s; char *p = strtok((char *)str.c_str(), sp); while (p != NULL) { res.push_back(p); // printf ("%s\n",p); p = strtok(NULL, sp); } /* for(int i=0;i<(int)res.size();i++) { printf("<<%s>>\n",res[i].c_str()); }*/ return res; }