fix indent problem with clang-format

This commit is contained in:
yancey 2023-02-07 05:34:06 -05:00
parent 43dfb12d9e
commit 41cac842a8
24 changed files with 4599 additions and 5433 deletions

1490
common.cpp

File diff suppressed because it is too large Load Diff

667
common.h
View File

@ -10,17 +10,17 @@
//#define __STDC_FORMAT_MACROS 1 //#define __STDC_FORMAT_MACROS 1
#include <inttypes.h> #include <inttypes.h>
#include<stdio.h> #include <stdio.h>
#include<string.h> #include <string.h>
#include<stdlib.h> #include <stdlib.h>
#include<getopt.h> #include <getopt.h>
#include<unistd.h> #include <unistd.h>
#include<errno.h> #include <errno.h>
#include <sys/types.h> #include <sys/types.h>
#include <sys/stat.h> #include <sys/stat.h>
#include <stdlib.h> //for exit(0); #include <stdlib.h> //for exit(0);
#include <errno.h> //For errno - the error number #include <errno.h> //For errno - the error number
//#include <netinet/tcp.h> //Provides declarations for tcp header //#include <netinet/tcp.h> //Provides declarations for tcp header
//#include <netinet/udp.h> //#include <netinet/udp.h>
//#include <netinet/ip.h> //Provides declarations for ip header //#include <netinet/ip.h> //Provides declarations for ip header
@ -51,17 +51,15 @@ typedef int socklen_t;
#include <netinet/in.h> #include <netinet/in.h>
#endif #endif
#include <unordered_map>
#include <unordered_set>
#include <map>
#include <list>
#include <string>
#include <vector>
using namespace std;
#include<unordered_map> typedef unsigned long long u64_t; // this works on most platform,avoid using the PRId64
#include<unordered_set>
#include<map>
#include<list>
#include<string>
#include<vector>
using namespace std;
typedef unsigned long long u64_t; //this works on most platform,avoid using the PRId64
typedef long long i64_t; typedef long long i64_t;
typedef unsigned int u32_t; typedef unsigned int u32_t;
@ -70,11 +68,10 @@ typedef int i32_t;
typedef unsigned short u16_t; typedef unsigned short u16_t;
typedef short i16_t; typedef short i16_t;
#if defined(__MINGW32__) #if defined(__MINGW32__)
int inet_pton(int af, const char *src, void *dst); int inet_pton(int af, const char *src, void *dst);
const char *inet_ntop(int af, const void *src, char *dst, socklen_t size); const char *inet_ntop(int af, const void *src, char *dst, socklen_t size);
#define setsockopt(a,b,c,d,e) setsockopt(a,b,c,(const char *)(d),e) #define setsockopt(a, b, c, d, e) setsockopt(a, b, c, (const char *)(d), e)
#endif #endif
char *get_sock_error(); char *get_sock_error();
@ -83,39 +80,36 @@ int init_ws();
#if defined(__MINGW32__) #if defined(__MINGW32__)
typedef SOCKET my_fd_t; typedef SOCKET my_fd_t;
inline int sock_close(my_fd_t fd) inline int sock_close(my_fd_t fd) {
{ return closesocket(fd);
return closesocket(fd);
} }
#else #else
typedef int my_fd_t; typedef int my_fd_t;
inline int sock_close(my_fd_t fd) inline int sock_close(my_fd_t fd) {
{ return close(fd);
return close(fd);
} }
#endif #endif
struct my_itimerspec { struct my_itimerspec {
struct timespec it_interval; /* Timer interval */ struct timespec it_interval; /* Timer interval */
struct timespec it_value; /* Initial expiration */ struct timespec it_value; /* Initial expiration */
}; };
typedef u64_t my_time_t; typedef u64_t my_time_t;
const int max_addr_len=100; const int max_addr_len = 100;
const int max_data_len=3600; const int max_data_len = 3600;
const int buf_len=max_data_len+200; const int buf_len = max_data_len + 200;
const int default_mtu=1250; const int default_mtu = 1250;
//const u32_t timer_interval=400; // const u32_t timer_interval=400;
////const u32_t conv_timeout=180000; ////const u32_t conv_timeout=180000;
//const u32_t conv_timeout=40000;//for test // const u32_t conv_timeout=40000;//for test
const u32_t conv_timeout=180000; const u32_t conv_timeout = 180000;
const int max_conv_num=10000; const int max_conv_num = 10000;
const int max_conn_num=200; const int max_conn_num = 200;
/* /*
const u32_t max_handshake_conn_num=10000; const u32_t max_handshake_conn_num=10000;
@ -128,46 +122,50 @@ const u32_t client_retry_interval=1000;
const u32_t server_handshake_timeout=10000;// this should be much longer than clients. client retry initially ,server retry passtively*/ const u32_t server_handshake_timeout=10000;// this should be much longer than clients. client retry initially ,server retry passtively*/
const int conv_clear_ratio=30; //conv grabage collecter check 1/30 of all conv one time const int conv_clear_ratio = 30; // conv grabage collecter check 1/30 of all conv one time
const int conn_clear_ratio=50; const int conn_clear_ratio = 50;
const int conv_clear_min=1; const int conv_clear_min = 1;
const int conn_clear_min=1; const int conn_clear_min = 1;
const u32_t conv_clear_interval=1000; const u32_t conv_clear_interval = 1000;
const u32_t conn_clear_interval=1000; const u32_t conn_clear_interval = 1000;
const i32_t max_fail_time = 0; // disable
const i32_t max_fail_time=0;//disable const u32_t heartbeat_interval = 1000;
const u32_t heartbeat_interval=1000; const u32_t timer_interval = 400; // this should be smaller than heartbeat_interval and retry interval;
const u32_t timer_interval=400;//this should be smaller than heartbeat_interval and retry interval; // const uint32_t conv_timeout=120000; //120 second
// const u32_t conv_timeout=120000; //for test
//const uint32_t conv_timeout=120000; //120 second const u32_t client_conn_timeout = 10000;
//const u32_t conv_timeout=120000; //for test const u32_t client_conn_uplink_timeout = client_conn_timeout + 2000;
const u32_t client_conn_timeout=10000;
const u32_t client_conn_uplink_timeout=client_conn_timeout+2000;
//const uint32_t server_conn_timeout=conv_timeout+60000;//this should be 60s+ longer than conv_timeout,so that conv_manager can destruct convs gradually,to avoid latency glicth
const u32_t server_conn_timeout=conv_timeout+20000;//for test
// const uint32_t server_conn_timeout=conv_timeout+60000;//this should be 60s+ longer than conv_timeout,so that conv_manager can destruct convs gradually,to avoid latency glicth
const u32_t server_conn_timeout = conv_timeout + 20000; // for test
extern int about_to_exit; extern int about_to_exit;
enum raw_mode_t{mode_faketcp=0,mode_udp,mode_icmp,mode_end}; enum raw_mode_t { mode_faketcp = 0,
mode_udp,
mode_icmp,
mode_end };
extern raw_mode_t raw_mode; extern raw_mode_t raw_mode;
enum program_mode_t {unset_mode=0,client_mode,server_mode}; enum program_mode_t { unset_mode = 0,
client_mode,
server_mode };
extern program_mode_t program_mode; extern program_mode_t program_mode;
extern unordered_map<int, const char*> raw_mode_tostring ; extern unordered_map<int, const char *> raw_mode_tostring;
enum working_mode_t {unset_working_mode=0,tunnel_mode,tun_dev_mode}; enum working_mode_t { unset_working_mode = 0,
tunnel_mode,
tun_dev_mode };
extern working_mode_t working_mode; extern working_mode_t working_mode;
extern int socket_buf_size; extern int socket_buf_size;
// typedef u32_t id_t;
//typedef u32_t id_t;
typedef u64_t iv_t; typedef u64_t iv_t;
@ -177,31 +175,35 @@ typedef u64_t anti_replay_seq_t;
typedef u64_t fd64_t; typedef u64_t fd64_t;
//enum dest_type{none=0,type_fd64_ip_port,type_fd64,type_fd64_ip_port_conv,type_fd64_conv/*,type_fd*/}; // enum dest_type{none=0,type_fd64_ip_port,type_fd64,type_fd64_ip_port_conv,type_fd64_conv/*,type_fd*/};
enum dest_type{none=0,type_fd64_addr,type_fd64,type_fd,type_write_fd,type_fd_addr/*,type_fd*/}; enum dest_type { none = 0,
type_fd64_addr,
type_fd64,
type_fd,
type_write_fd,
type_fd_addr /*,type_fd*/ };
/* /*
struct ip_port_t struct ip_port_t
{ {
u32_t ip; u32_t ip;
int port; int port;
void from_u64(u64_t u64); void from_u64(u64_t u64);
u64_t to_u64(); u64_t to_u64();
char * to_s(); char * to_s();
}; };
struct fd64_ip_port_t struct fd64_ip_port_t
{ {
fd64_t fd64; fd64_t fd64;
ip_port_t ip_port; ip_port_t ip_port;
}; };
struct fd_ip_port_t struct fd_ip_port_t
{ {
int fd; int fd;
ip_port_t ip_port; ip_port_t ip_port;
};*/ };*/
struct pseudo_header { struct pseudo_header {
u32_t source_address; u32_t source_address;
u32_t dest_address; u32_t dest_address;
@ -210,205 +212,181 @@ struct pseudo_header {
unsigned short tcp_length; unsigned short tcp_length;
}; };
u32_t djb2(unsigned char *str,int len); u32_t djb2(unsigned char *str, int len);
u32_t sdbm(unsigned char *str,int len); u32_t sdbm(unsigned char *str, int len);
struct address_t //TODO scope id struct address_t // TODO scope id
{ {
struct hash_function struct hash_function {
{ u32_t operator()(const address_t &key) const {
u32_t operator()(const address_t &key) const return sdbm((unsigned char *)&key.inner, sizeof(key.inner));
{ }
return sdbm((unsigned char*)&key.inner,sizeof(key.inner)); };
}
};
union storage_t //sockaddr_storage is too huge, we dont use it. union storage_t // sockaddr_storage is too huge, we dont use it.
{
sockaddr_in ipv4;
sockaddr_in6 ipv6;
};
storage_t inner;
/*address_t()
{
clear();
}*/
void clear()
{
memset(&inner,0,sizeof(inner));
}
/*
int from_ip_port(u32_t ip, int port)
{
clear();
inner.ipv4.sin_family=AF_INET;
inner.ipv4.sin_port=htons(port);
inner.ipv4.sin_addr.s_addr=ip;
return 0;
}*/
int from_ip_port_new(int type, void * ip, int port)
{
clear();
if(type==AF_INET)
{
inner.ipv4.sin_family=AF_INET;
inner.ipv4.sin_port=htons(port);
inner.ipv4.sin_addr.s_addr=*((u32_t *)ip);
}
else if(type==AF_INET6)
{
inner.ipv6.sin6_family=AF_INET6;
inner.ipv6.sin6_port=htons(port);
inner.ipv6.sin6_addr=*((in6_addr*)ip);
}
return 0;
}
int from_str(char * str);
int from_str_ip_only(char * str);
int from_sockaddr(sockaddr *,socklen_t);
char* get_str();
void to_str(char *);
inline int is_vaild()
{
u32_t ret=((sockaddr*)&inner)->sa_family;
return (ret==AF_INET||ret==AF_INET6);
}
inline u32_t get_type()
{
assert(is_vaild());
u32_t ret=((sockaddr*)&inner)->sa_family;
return ret;
}
inline u32_t get_len()
{
u32_t type=get_type();
switch(type)
{
case AF_INET:
return sizeof(sockaddr_in);
case AF_INET6:
return sizeof(sockaddr_in6);
default:
assert(0==1);
}
return -1;
}
inline u32_t get_port()
{
u32_t type=get_type();
switch(type)
{
case AF_INET:
return ntohs(inner.ipv4.sin_port);
case AF_INET6:
return ntohs(inner.ipv6.sin6_port);
default:
assert(0==1);
}
return -1;
}
inline void set_port(int port)
{
u32_t type=get_type();
switch(type)
{
case AF_INET:
inner.ipv4.sin_port=htons(port);
break;
case AF_INET6:
inner.ipv6.sin6_port=htons(port);
break;
default:
assert(0==1);
}
return ;
}
bool operator == (const address_t &b) const
{ {
//return this->data==b.data; sockaddr_in ipv4;
return memcmp(&this->inner,&b.inner,sizeof(this->inner))==0; sockaddr_in6 ipv6;
};
storage_t inner;
/*address_t()
{
clear();
}*/
void clear() {
memset(&inner, 0, sizeof(inner));
}
/*
int from_ip_port(u32_t ip, int port)
{
clear();
inner.ipv4.sin_family=AF_INET;
inner.ipv4.sin_port=htons(port);
inner.ipv4.sin_addr.s_addr=ip;
return 0;
}*/
int from_ip_port_new(int type, void *ip, int port) {
clear();
if (type == AF_INET) {
inner.ipv4.sin_family = AF_INET;
inner.ipv4.sin_port = htons(port);
inner.ipv4.sin_addr.s_addr = *((u32_t *)ip);
} else if (type == AF_INET6) {
inner.ipv6.sin6_family = AF_INET6;
inner.ipv6.sin6_port = htons(port);
inner.ipv6.sin6_addr = *((in6_addr *)ip);
}
return 0;
}
int from_str(char *str);
int from_str_ip_only(char *str);
int from_sockaddr(sockaddr *, socklen_t);
char *get_str();
void to_str(char *);
inline int is_vaild() {
u32_t ret = ((sockaddr *)&inner)->sa_family;
return (ret == AF_INET || ret == AF_INET6);
}
inline u32_t get_type() {
assert(is_vaild());
u32_t ret = ((sockaddr *)&inner)->sa_family;
return ret;
}
inline u32_t get_len() {
u32_t type = get_type();
switch (type) {
case AF_INET:
return sizeof(sockaddr_in);
case AF_INET6:
return sizeof(sockaddr_in6);
default:
assert(0 == 1);
}
return -1;
}
inline u32_t get_port() {
u32_t type = get_type();
switch (type) {
case AF_INET:
return ntohs(inner.ipv4.sin_port);
case AF_INET6:
return ntohs(inner.ipv6.sin6_port);
default:
assert(0 == 1);
}
return -1;
}
inline void set_port(int port) {
u32_t type = get_type();
switch (type) {
case AF_INET:
inner.ipv4.sin_port = htons(port);
break;
case AF_INET6:
inner.ipv6.sin6_port = htons(port);
break;
default:
assert(0 == 1);
}
return;
}
bool operator==(const address_t &b) const {
// return this->data==b.data;
return memcmp(&this->inner, &b.inner, sizeof(this->inner)) == 0;
} }
int new_connected_udp_fd(); int new_connected_udp_fd();
char* get_ip(); char *get_ip();
}; };
namespace std { namespace std {
template <> template <>
struct hash<address_t> struct hash<address_t> {
{ std::size_t operator()(const address_t &key) const {
std::size_t operator()(const address_t& key) const // return address_t::hash_function(k);
{ return sdbm((unsigned char *)&key.inner, sizeof(key.inner));
}
};
} // namespace std
//return address_t::hash_function(k); struct fd64_addr_t {
return sdbm((unsigned char*)&key.inner,sizeof(key.inner)); fd64_t fd64;
} address_t addr;
};
}
struct fd64_addr_t
{
fd64_t fd64;
address_t addr;
}; };
struct fd_addr_t struct fd_addr_t {
{ int fd;
int fd; address_t addr;
address_t addr;
}; };
union inner_t union inner_t {
{ fd64_t fd64;
fd64_t fd64; int fd;
int fd; fd64_addr_t fd64_addr;
fd64_addr_t fd64_addr; fd_addr_t fd_addr;
fd_addr_t fd_addr;
}; };
struct dest_t struct dest_t {
{ dest_type type;
dest_type type; inner_t inner;
inner_t inner; u32_t conv;
u32_t conv; int cook = 0;
int cook=0;
}; };
struct fd_info_t struct fd_info_t {
{ address_t addr;
address_t addr; ev_io io_watcher;
ev_io io_watcher;
}; };
u64_t get_current_time(); u64_t get_current_time();
//u64_t get_current_time_rough(); // u64_t get_current_time_rough();
u64_t get_current_time_us(); u64_t get_current_time_us();
u64_t pack_u64(u32_t a,u32_t b); u64_t pack_u64(u32_t a, u32_t b);
u32_t get_u64_h(u64_t a); u32_t get_u64_h(u64_t a);
u32_t get_u64_l(u64_t a); u32_t get_u64_l(u64_t a);
void write_u16(char *,u16_t a); void write_u16(char *, u16_t a);
u16_t read_u16(char *); u16_t read_u16(char *);
void write_u32(char *,u32_t a); void write_u32(char *, u32_t a);
u32_t read_u32(char *); u32_t read_u32(char *);
void write_u64(char *,u64_t a); void write_u64(char *, u64_t a);
u64_t read_uu64(char *); u64_t read_uu64(char *);
char * my_ntoa(u32_t ip); char *my_ntoa(u32_t ip);
void myexit(int a); void myexit(int a);
void init_random_number_fd(); void init_random_number_fd();
@ -417,148 +395,135 @@ u32_t get_fake_random_number();
u32_t get_fake_random_number_nz(); u32_t get_fake_random_number_nz();
u64_t ntoh64(u64_t a); u64_t ntoh64(u64_t a);
u64_t hton64(u64_t a); u64_t hton64(u64_t a);
bool larger_than_u16(uint16_t a,uint16_t b); bool larger_than_u16(uint16_t a, uint16_t b);
bool larger_than_u32(u32_t a,u32_t b); bool larger_than_u32(u32_t a, u32_t b);
void setnonblocking(int sock); void setnonblocking(int sock);
int set_buf_size(int fd,int socket_buf_size); int set_buf_size(int fd, int socket_buf_size);
unsigned short csum(const unsigned short *ptr,int nbytes); unsigned short csum(const unsigned short *ptr, int nbytes);
unsigned short tcp_csum(const pseudo_header & ph,const unsigned short *ptr,int nbytes); unsigned short tcp_csum(const pseudo_header &ph, const unsigned short *ptr, int nbytes);
void signal_handler(int sig); void signal_handler(int sig);
//int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len); // int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len);
//int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3); // int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3);
void myexit(int a); void myexit(int a);
int add_iptables_rule(char *); int add_iptables_rule(char *);
int clear_iptables_rule(); int clear_iptables_rule();
void get_fake_random_chars(char * s,int len); void get_fake_random_chars(char *s, int len);
int random_between(u32_t a,u32_t b); int random_between(u32_t a, u32_t b);
int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval); int set_timer_ms(int epollfd, int &timer_fd, u32_t timer_interval);
int round_up_div(int a,int b); int round_up_div(int a, int b);
int create_fifo(char * file); int create_fifo(char *file);
/* /*
int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port); int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port);
*/ */
int new_listen_socket(int &fd,u32_t ip,int port); int new_listen_socket(int &fd, u32_t ip, int port);
int new_connected_socket(int &fd,u32_t ip,int port); int new_connected_socket(int &fd, u32_t ip, int port);
int new_listen_socket2(int &fd,address_t &addr); int new_listen_socket2(int &fd, address_t &addr);
int new_connected_socket2(int &fd,address_t &addr,address_t *bind_addr,char *out_interface); int new_connected_socket2(int &fd, address_t &addr, address_t *bind_addr, char *out_interface);
struct not_copy_able_t struct not_copy_able_t {
{ not_copy_able_t() {
not_copy_able_t() }
{ not_copy_able_t(const not_copy_able_t &other) {
assert(0 == 1);
} }
not_copy_able_t(const not_copy_able_t &other) const not_copy_able_t &operator=(const not_copy_able_t &other) {
{ assert(0 == 1);
assert(0==1); return other;
} }
const not_copy_able_t & operator=(const not_copy_able_t &other)
{
assert(0==1);
return other;
}
}; };
template <class key_t> template <class key_t>
struct lru_collector_t:not_copy_able_t struct lru_collector_t : not_copy_able_t {
{ // typedef void* key_t;
//typedef void* key_t; //#define key_t void*
//#define key_t void* struct lru_pair_t {
struct lru_pair_t key_t key;
{ my_time_t ts;
key_t key; };
my_time_t ts;
};
unordered_map<key_t,typename list<lru_pair_t>::iterator> mp; unordered_map<key_t, typename list<lru_pair_t>::iterator> mp;
list<lru_pair_t> q; list<lru_pair_t> q;
int update(key_t key) int update(key_t key) {
{ assert(mp.find(key) != mp.end());
assert(mp.find(key)!=mp.end()); auto it = mp[key];
auto it=mp[key]; q.erase(it);
q.erase(it);
my_time_t value=get_current_time(); my_time_t value = get_current_time();
if(!q.empty()) if (!q.empty()) {
{ assert(value >= q.front().ts);
assert(value >=q.front().ts); }
} lru_pair_t tmp;
lru_pair_t tmp; tmp.key=key; tmp.ts=value; tmp.key = key;
q.push_front( tmp); tmp.ts = value;
mp[key]=q.begin(); q.push_front(tmp);
mp[key] = q.begin();
return 0; return 0;
} }
int new_key(key_t key) int new_key(key_t key) {
{ assert(mp.find(key) == mp.end());
assert(mp.find(key)==mp.end());
my_time_t value=get_current_time(); my_time_t value = get_current_time();
if(!q.empty()) if (!q.empty()) {
{ assert(value >= q.front().ts);
assert(value >=q.front().ts); }
} lru_pair_t tmp;
lru_pair_t tmp; tmp.key=key; tmp.ts=value; tmp.key = key;
q.push_front( tmp); tmp.ts = value;
mp[key]=q.begin(); q.push_front(tmp);
mp[key] = q.begin();
return 0; return 0;
} }
int size() int size() {
{ return q.size();
return q.size(); }
} int empty() {
int empty() return q.empty();
{ }
return q.empty(); void clear() {
} mp.clear();
void clear() q.clear();
{ }
mp.clear(); q.clear(); my_time_t ts_of(key_t key) {
} assert(mp.find(key) != mp.end());
my_time_t ts_of(key_t key) return mp[key]->ts;
{ }
assert(mp.find(key)!=mp.end());
return mp[key]->ts;
}
my_time_t peek_back(key_t &key) my_time_t peek_back(key_t &key) {
{ assert(!q.empty());
assert(!q.empty()); auto it = q.end();
auto it=q.end(); it--; it--;
key=it->key; key = it->key;
return it->ts; return it->ts;
} }
void erase(key_t key) void erase(key_t key) {
{ assert(mp.find(key) != mp.end());
assert(mp.find(key)!=mp.end()); q.erase(mp[key]);
q.erase(mp[key]); mp.erase(key);
mp.erase(key); }
} /*
/* void erase_back()
void erase_back() {
{ assert(!q.empty());
assert(!q.empty()); auto it=q.end(); it--;
auto it=q.end(); it--; key_t key=it->key;
key_t key=it->key; erase(key);
erase(key); }*/
}*/
}; };
vector<string> string_to_vec(const char *s, const char *sp);
vector<string> string_to_vec(const char * s,const char * sp) ;
#endif /* COMMON_H_ */ #endif /* COMMON_H_ */

View File

@ -7,147 +7,124 @@
#include "connection.h" #include "connection.h"
//const int disable_conv_clear=0;//a udp connection in the multiplexer is called conversation in this program,conv for short. // const int disable_conv_clear=0;//a udp connection in the multiplexer is called conversation in this program,conv for short.
const int disable_conn_clear=0;//a raw connection is called conn. const int disable_conn_clear = 0; // a raw connection is called conn.
int report_interval=0; int report_interval = 0;
void server_clear_function(u64_t u64)//used in conv_manager in server mode.for server we have to use one udp fd for one conv(udp connection), void server_clear_function(u64_t u64) // used in conv_manager in server mode.for server we have to use one udp fd for one conv(udp connection),
//so we have to close the fd when conv expires // so we have to close the fd when conv expires
{ {
fd64_t fd64=u64; fd64_t fd64 = u64;
assert(fd_manager.exist(fd64)); assert(fd_manager.exist(fd64));
ev_io &watcher= fd_manager.get_info(fd64).io_watcher; ev_io &watcher = fd_manager.get_info(fd64).io_watcher;
address_t &addr=fd_manager.get_info(fd64).addr;// address_t &addr = fd_manager.get_info(fd64).addr; //
assert(conn_manager.exist(addr));// assert(conn_manager.exist(addr)); //
struct ev_loop *loop =conn_manager.find_insert(addr).loop; // overkill ? should we just use ev_default_loop(0)? struct ev_loop *loop = conn_manager.find_insert(addr).loop; // overkill ? should we just use ev_default_loop(0)?
ev_io_stop(loop,&watcher); ev_io_stop(loop, &watcher);
fd_manager.fd64_close(fd64);
fd_manager.fd64_close(fd64);
} }
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
conn_manager_t::conn_manager_t() conn_manager_t::conn_manager_t() {
{ mp.reserve(10007);
mp.reserve(10007); last_clear_time = 0;
last_clear_time=0;
} }
int conn_manager_t::exist(address_t addr) int conn_manager_t::exist(address_t addr) {
{ if (mp.find(addr) != mp.end()) {
return 1;
if(mp.find(addr)!=mp.end()) }
{ return 0;
return 1;
}
return 0;
} }
conn_info_t *& conn_manager_t::find_insert_p(address_t addr) //be aware,the adress may change after rehash conn_info_t *&conn_manager_t::find_insert_p(address_t addr) // be aware,the adress may change after rehash
{ {
// u64_t u64=0; // u64_t u64=0;
//u64=ip; // u64=ip;
//u64<<=32u; // u64<<=32u;
//u64|=port; // u64|=port;
unordered_map<address_t,conn_info_t*>::iterator it=mp.find(addr); unordered_map<address_t, conn_info_t *>::iterator it = mp.find(addr);
if(it==mp.end()) if (it == mp.end()) {
{ mp[addr] = new conn_info_t;
mp[addr]=new conn_info_t; // lru.new_key(addr);
//lru.new_key(addr); } else {
} // lru.update(addr);
else }
{ return mp[addr];
//lru.update(addr);
}
return mp[addr];
} }
conn_info_t & conn_manager_t::find_insert(address_t addr) //be aware,the adress may change after rehash conn_info_t &conn_manager_t::find_insert(address_t addr) // be aware,the adress may change after rehash
{ {
//u64_t u64=0; // u64_t u64=0;
//u64=ip; // u64=ip;
//u64<<=32u; // u64<<=32u;
//u64|=port; // u64|=port;
unordered_map<address_t,conn_info_t*>::iterator it=mp.find(addr); unordered_map<address_t, conn_info_t *>::iterator it = mp.find(addr);
if(it==mp.end()) if (it == mp.end()) {
{ mp[addr] = new conn_info_t;
mp[addr]=new conn_info_t; // lru.new_key(addr);
//lru.new_key(addr); } else {
} // lru.update(addr);
else }
{ return *mp[addr];
//lru.update(addr);
}
return *mp[addr];
} }
int conn_manager_t::erase(unordered_map<address_t,conn_info_t*>::iterator erase_it) int conn_manager_t::erase(unordered_map<address_t, conn_info_t *>::iterator erase_it) {
{ delete (erase_it->second);
delete(erase_it->second); mp.erase(erase_it->first);
mp.erase(erase_it->first); return 0;
return 0;
} }
int conn_manager_t::clear_inactive() int conn_manager_t::clear_inactive() {
{ if (get_current_time() - last_clear_time > conn_clear_interval) {
if(get_current_time()-last_clear_time>conn_clear_interval) last_clear_time = get_current_time();
{ return clear_inactive0();
last_clear_time=get_current_time(); }
return clear_inactive0(); return 0;
}
return 0;
} }
int conn_manager_t::clear_inactive0() int conn_manager_t::clear_inactive0() {
{ // mylog(log_info,"called\n");
//mylog(log_info,"called\n"); unordered_map<address_t, conn_info_t *>::iterator it;
unordered_map<address_t,conn_info_t*>::iterator it; unordered_map<address_t, conn_info_t *>::iterator old_it;
unordered_map<address_t,conn_info_t*>::iterator old_it;
if(disable_conn_clear) return 0; if (disable_conn_clear) return 0;
//map<uint32_t,uint64_t>::iterator it; // map<uint32_t,uint64_t>::iterator it;
int cnt=0; int cnt = 0;
it=clear_it;//TODO,write it back it = clear_it; // TODO,write it back
int size=mp.size(); int size = mp.size();
int num_to_clean=size/conn_clear_ratio+conn_clear_min; //clear 1/10 each time,to avoid latency glitch int num_to_clean = size / conn_clear_ratio + conn_clear_min; // clear 1/10 each time,to avoid latency glitch
//mylog(log_trace,"mp.size() %d\n", size); // mylog(log_trace,"mp.size() %d\n", size);
num_to_clean=min(num_to_clean,(int)mp.size()); num_to_clean = min(num_to_clean, (int)mp.size());
u64_t current_time=get_current_time(); u64_t current_time = get_current_time();
//mylog(log_info,"here size=%d\n",(int)mp.size()); // mylog(log_info,"here size=%d\n",(int)mp.size());
for(;;) for (;;) {
{ if (cnt >= num_to_clean) break;
if(cnt>=num_to_clean) break; if (mp.begin() == mp.end()) break;
if(mp.begin()==mp.end()) break; if (it == mp.end()) {
if(it==mp.end()) it = mp.begin();
{ }
it=mp.begin();
}
if(it->second->conv_manager.s.get_size() >0) if (it->second->conv_manager.s.get_size() > 0) {
{ // mylog(log_info,"[%s:%d]size %d \n",my_ntoa(get_u64_h(it->first)),get_u64_l(it->first),(int)it->second->conv_manager.get_size());
//mylog(log_info,"[%s:%d]size %d \n",my_ntoa(get_u64_h(it->first)),get_u64_l(it->first),(int)it->second->conv_manager.get_size()); it++;
it++; } else if (current_time < it->second->last_active_time + server_conn_timeout) {
} it++;
else if(current_time<it->second->last_active_time+server_conn_timeout) } else {
{ address_t tmp_addr = it->first; // avoid making get_str() const;
it++; mylog(log_info, "{%s} inactive conn cleared \n", tmp_addr.get_str());
} old_it = it;
else it++;
{ erase(old_it);
address_t tmp_addr=it->first;// avoid making get_str() const; }
mylog(log_info,"{%s} inactive conn cleared \n",tmp_addr.get_str()); cnt++;
old_it=it; }
it++; clear_it = it;
erase(old_it); return 0;
}
cnt++;
}
clear_it=it;
return 0;
} }

View File

@ -19,365 +19,304 @@ extern int disable_anti_replay;
extern int report_interval; extern int report_interval;
const int disable_conv_clear=0; const int disable_conv_clear = 0;
void server_clear_function(u64_t u64); void server_clear_function(u64_t u64);
template <class T> template <class T>
struct conv_manager_t // manage the udp connections struct conv_manager_t // manage the udp connections
{ {
//typedef hash_map map; // typedef hash_map map;
unordered_map<T,u32_t> data_to_conv; //conv and u64 are both supposed to be uniq unordered_map<T, u32_t> data_to_conv; // conv and u64 are both supposed to be uniq
unordered_map<u32_t,T> conv_to_data; unordered_map<u32_t, T> conv_to_data;
lru_collector_t<u32_t> lru; lru_collector_t<u32_t> lru;
//unordered_map<u32_t,u64_t> conv_last_active_time; // unordered_map<u32_t,u64_t> conv_last_active_time;
//unordered_map<u32_t,u64_t>::iterator clear_it; // unordered_map<u32_t,u64_t>::iterator clear_it;
void (*additional_clear_function)(T data) =0; void (*additional_clear_function)(T data) = 0;
long long last_clear_time; long long last_clear_time;
conv_manager_t() conv_manager_t() {
{ // clear_it=conv_last_active_time.begin();
//clear_it=conv_last_active_time.begin(); long long last_clear_time = 0;
long long last_clear_time=0; additional_clear_function = 0;
additional_clear_function=0; }
} ~conv_manager_t() {
~conv_manager_t() clear();
{ }
clear(); int get_size() {
} return conv_to_data.size();
int get_size() }
{ void reserve() {
return conv_to_data.size(); data_to_conv.reserve(10007);
} conv_to_data.reserve(10007);
void reserve() // conv_last_active_time.reserve(10007);
{
data_to_conv.reserve(10007);
conv_to_data.reserve(10007);
//conv_last_active_time.reserve(10007);
lru.mp.reserve(10007); lru.mp.reserve(10007);
} }
void clear() void clear() {
{ if (disable_conv_clear) return;
if(disable_conv_clear) return ;
if(additional_clear_function!=0) if (additional_clear_function != 0) {
{ for (auto it = conv_to_data.begin(); it != conv_to_data.end(); it++) {
for(auto it=conv_to_data.begin();it!=conv_to_data.end();it++) // int fd=int((it->second<<32u)>>32u);
{ additional_clear_function(it->second);
//int fd=int((it->second<<32u)>>32u); }
additional_clear_function( it->second); }
} data_to_conv.clear();
} conv_to_data.clear();
data_to_conv.clear();
conv_to_data.clear();
lru.clear(); lru.clear();
//conv_last_active_time.clear(); // conv_last_active_time.clear();
//clear_it=conv_last_active_time.begin(); // clear_it=conv_last_active_time.begin();
}
u32_t get_new_conv() {
u32_t conv = get_fake_random_number_nz();
while (conv_to_data.find(conv) != conv_to_data.end()) {
conv = get_fake_random_number_nz();
}
return conv;
}
int is_conv_used(u32_t conv) {
return conv_to_data.find(conv) != conv_to_data.end();
}
int is_data_used(T data) {
return data_to_conv.find(data) != data_to_conv.end();
}
u32_t find_conv_by_data(T data) {
return data_to_conv[data];
}
T find_data_by_conv(u32_t conv) {
return conv_to_data[conv];
}
int update_active_time(u32_t conv) {
// return conv_last_active_time[conv]=get_current_time();
lru.update(conv);
return 0;
}
int insert_conv(u32_t conv, T data) {
data_to_conv[data] = conv;
conv_to_data[conv] = data;
// conv_last_active_time[conv]=get_current_time();
lru.new_key(conv);
return 0;
}
int erase_conv(u32_t conv) {
if (disable_conv_clear) return 0;
T data = conv_to_data[conv];
if (additional_clear_function != 0) {
additional_clear_function(data);
}
conv_to_data.erase(conv);
data_to_conv.erase(data);
// conv_last_active_time.erase(conv);
lru.erase(conv);
return 0;
}
int clear_inactive(char *info = 0) {
if (get_current_time() - last_clear_time > conv_clear_interval) {
last_clear_time = get_current_time();
return clear_inactive0(info);
}
return 0;
}
int clear_inactive0(char *info) {
if (disable_conv_clear) return 0;
} unordered_map<u32_t, u64_t>::iterator it;
u32_t get_new_conv() unordered_map<u32_t, u64_t>::iterator old_it;
{
u32_t conv=get_fake_random_number_nz();
while(conv_to_data.find(conv)!=conv_to_data.end())
{
conv=get_fake_random_number_nz();
}
return conv;
}
int is_conv_used(u32_t conv)
{
return conv_to_data.find(conv)!=conv_to_data.end();
}
int is_data_used(T data)
{
return data_to_conv.find(data)!=data_to_conv.end();
}
u32_t find_conv_by_data(T data)
{
return data_to_conv[data];
}
T find_data_by_conv(u32_t conv)
{
return conv_to_data[conv];
}
int update_active_time(u32_t conv)
{
//return conv_last_active_time[conv]=get_current_time();
lru.update(conv);
return 0;
}
int insert_conv(u32_t conv,T data)
{
data_to_conv[data]=conv;
conv_to_data[conv]=data;
//conv_last_active_time[conv]=get_current_time();
lru.new_key(conv);
return 0;
}
int erase_conv(u32_t conv)
{
if(disable_conv_clear) return 0;
T data=conv_to_data[conv];
if(additional_clear_function!=0)
{
additional_clear_function(data);
}
conv_to_data.erase(conv);
data_to_conv.erase(data);
//conv_last_active_time.erase(conv);
lru.erase(conv);
return 0;
}
int clear_inactive(char * info=0)
{
if(get_current_time()-last_clear_time>conv_clear_interval)
{
last_clear_time=get_current_time();
return clear_inactive0(info);
}
return 0;
}
int clear_inactive0(char * info)
{
if(disable_conv_clear) return 0;
// map<uint32_t,uint64_t>::iterator it;
int cnt = 0;
// it=clear_it;
int size = lru.size();
int num_to_clean = size / conv_clear_ratio + conv_clear_min; // clear 1/10 each time,to avoid latency glitch
unordered_map<u32_t,u64_t>::iterator it; num_to_clean = min(num_to_clean, size);
unordered_map<u32_t,u64_t>::iterator old_it;
//map<uint32_t,uint64_t>::iterator it; my_time_t current_time = get_current_time();
int cnt=0; for (;;) {
//it=clear_it; if (cnt >= num_to_clean) break;
int size=lru.size(); if (lru.empty()) break;
int num_to_clean=size/conv_clear_ratio+conv_clear_min; //clear 1/10 each time,to avoid latency glitch
num_to_clean=min(num_to_clean,size); u32_t conv;
my_time_t ts = lru.peek_back(conv);
my_time_t current_time=get_current_time(); if (current_time - ts < conv_timeout) break;
for(;;)
{
if(cnt>=num_to_clean) break;
if(lru.empty()) break;
u32_t conv; erase_conv(conv);
my_time_t ts=lru.peek_back(conv); if (info == 0) {
mylog(log_info, "conv %x cleared\n", conv);
} else {
mylog(log_info, "[%s]conv %x cleared\n", info, conv);
}
cnt++;
}
return 0;
}
if(current_time- ts < conv_timeout) break; /*
conv_manager_t();
~conv_manager_t();
int get_size();
void reserve();
void clear();
u32_t get_new_conv();
int is_conv_used(u32_t conv);
int is_u64_used(T u64);
u32_t find_conv_by_u64(T u64);
T find_u64_by_conv(u32_t conv);
int update_active_time(u32_t conv);
int insert_conv(u32_t conv,T u64);
int erase_conv(u32_t conv);
int clear_inactive(char * ip_port=0);
int clear_inactive0(char * ip_port);*/
}; // g_conv_manager;
erase_conv(conv); struct inner_stat_t {
if(info==0) u64_t input_packet_num;
{ u64_t input_packet_size;
mylog(log_info,"conv %x cleared\n",conv); u64_t output_packet_num;
} u64_t output_packet_size;
else
{
mylog(log_info,"[%s]conv %x cleared\n",info,conv);
}
cnt++;
}
return 0;
}
/*
conv_manager_t();
~conv_manager_t();
int get_size();
void reserve();
void clear();
u32_t get_new_conv();
int is_conv_used(u32_t conv);
int is_u64_used(T u64);
u32_t find_conv_by_u64(T u64);
T find_u64_by_conv(u32_t conv);
int update_active_time(u32_t conv);
int insert_conv(u32_t conv,T u64);
int erase_conv(u32_t conv);
int clear_inactive(char * ip_port=0);
int clear_inactive0(char * ip_port);*/
};//g_conv_manager;
struct inner_stat_t
{
u64_t input_packet_num;
u64_t input_packet_size;
u64_t output_packet_num;
u64_t output_packet_size;
}; };
struct stat_t struct stat_t {
{ u64_t last_report_time;
u64_t last_report_time; inner_stat_t normal_to_fec;
inner_stat_t normal_to_fec; inner_stat_t fec_to_normal;
inner_stat_t fec_to_normal; stat_t() {
stat_t() memset(this, 0, sizeof(stat_t));
{ }
memset(this,0,sizeof(stat_t)); void report_as_client() {
} if (report_interval != 0 && get_current_time() - last_report_time > u64_t(report_interval) * 1000) {
void report_as_client() last_report_time = get_current_time();
{ inner_stat_t &a = normal_to_fec;
if(report_interval!=0 &&get_current_time()-last_report_time>u64_t(report_interval)*1000) inner_stat_t &b = fec_to_normal;
{ mylog(log_info, "[report]client-->server:(original:%llu pkt;%llu byte) (fec:%llu pkt,%llu byte) server-->client:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte)\n",
last_report_time=get_current_time(); a.input_packet_num, a.input_packet_size, a.output_packet_num, a.output_packet_size,
inner_stat_t &a=normal_to_fec; b.output_packet_num, b.output_packet_size, b.input_packet_num, b.input_packet_size);
inner_stat_t &b=fec_to_normal; }
mylog(log_info,"[report]client-->server:(original:%llu pkt;%llu byte) (fec:%llu pkt,%llu byte) server-->client:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte)\n", }
a.input_packet_num,a.input_packet_size,a.output_packet_num,a.output_packet_size, void report_as_server(address_t &addr) {
b.output_packet_num,b.output_packet_size,b.input_packet_num,b.input_packet_size if (report_interval != 0 && get_current_time() - last_report_time > u64_t(report_interval) * 1000) {
); last_report_time = get_current_time();
} inner_stat_t &a = fec_to_normal;
} inner_stat_t &b = normal_to_fec;
void report_as_server(address_t &addr) mylog(log_info, "[report][%s]client-->server:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte) server-->client:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte)\n",
{ addr.get_str(),
if(report_interval!=0 &&get_current_time()-last_report_time>u64_t(report_interval)*1000) a.output_packet_num, a.output_packet_size, a.input_packet_num, a.input_packet_size,
{ b.input_packet_num, b.input_packet_size, b.output_packet_num, b.output_packet_size);
last_report_time=get_current_time(); }
inner_stat_t &a=fec_to_normal; }
inner_stat_t &b=normal_to_fec;
mylog(log_info,"[report][%s]client-->server:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte) server-->client:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte)\n",
addr.get_str(),
a.output_packet_num,a.output_packet_size,a.input_packet_num,a.input_packet_size,
b.input_packet_num,b.input_packet_size,b.output_packet_num,b.output_packet_size
);
}
}
}; };
struct conn_info_t : not_copy_able_t // stores info for a raw connection.for client ,there is only one connection,for server there can be thousand of connection since server can
struct conn_info_t:not_copy_able_t //stores info for a raw connection.for client ,there is only one connection,for server there can be thousand of connection since server can // handle multiple clients
//handle multiple clients
{ {
union tmp_union_t union tmp_union_t {
{ conv_manager_t<address_t> c;
conv_manager_t<address_t> c; conv_manager_t<u64_t> s;
conv_manager_t<u64_t> s; // avoid templates here and there, avoid pointer and type cast
//avoid templates here and there, avoid pointer and type cast tmp_union_t() {
tmp_union_t() if (program_mode == client_mode) {
{ new (&c) conv_manager_t<address_t>();
if(program_mode==client_mode) } else {
{ assert(program_mode == server_mode);
new( &c ) conv_manager_t<address_t>(); new (&s) conv_manager_t<u64_t>();
} }
else }
{ ~tmp_union_t() {
assert(program_mode==server_mode); if (program_mode == client_mode) {
new( &s ) conv_manager_t<u64_t>(); c.~conv_manager_t<address_t>();
} } else {
} assert(program_mode == server_mode);
~tmp_union_t() s.~conv_manager_t<u64_t>();
{ }
if(program_mode==client_mode) }
{ } conv_manager;
c.~conv_manager_t<address_t>();
}
else
{
assert(program_mode==server_mode);
s.~conv_manager_t<u64_t>();
}
}
}conv_manager;
fec_encode_manager_t fec_encode_manager;
fec_decode_manager_t fec_decode_manager;
ev_timer timer;
// my_timer_t timer;
fec_encode_manager_t fec_encode_manager; u64_t last_active_time;
fec_decode_manager_t fec_decode_manager; stat_t stat;
ev_timer timer;
//my_timer_t timer;
u64_t last_active_time; struct ev_loop *loop = 0;
stat_t stat; int local_listen_fd;
struct ev_loop* loop=0; int remote_fd; // only used for client
int local_listen_fd; fd64_t remote_fd64; // only used for client
int remote_fd; //only used for client // ip_port_t ip_port;
fd64_t remote_fd64;//only used for client address_t addr; // only used for server
//ip_port_t ip_port; conn_info_t() {
address_t addr;//only used for server if (program_mode == server_mode) {
conv_manager.s.additional_clear_function = server_clear_function;
} else {
assert(program_mode == client_mode);
}
}
conn_info_t() ~conn_info_t() {
{ if (loop)
if(program_mode==server_mode) ev_timer_stop(loop, &timer);
{ }
conv_manager.s.additional_clear_function=server_clear_function; void update_active_time() {
} last_active_time = get_current_time();
else }
{ /*
assert(program_mode==client_mode); conn_info_t(const conn_info_t &b)
} {
} assert(0==1);
}*/
~conn_info_t()
{
if(loop)
ev_timer_stop(loop,&timer);
}
void update_active_time()
{
last_active_time=get_current_time();
}
/*
conn_info_t(const conn_info_t &b)
{
assert(0==1);
}*/
}; };
/* /*
struct conn_manager_t //manager for connections. for client,we dont need conn_manager since there is only one connection.for server we use one conn_manager for all connections struct conn_manager_t //manager for connections. for client,we dont need conn_manager since there is only one connection.for server we use one conn_manager for all connections
{ {
unordered_map<u64_t,conn_info_t*> mp;//<ip,port> to conn_info_t; unordered_map<u64_t,conn_info_t*> mp;//<ip,port> to conn_info_t;
unordered_map<u64_t,conn_info_t*>::iterator clear_it; unordered_map<u64_t,conn_info_t*>::iterator clear_it;
long long last_clear_time; long long last_clear_time;
conn_manager_t(); conn_manager_t();
conn_manager_t(const conn_info_t &b) conn_manager_t(const conn_info_t &b)
{ {
assert(0==1); assert(0==1);
} }
int exist(ip_port_t); int exist(ip_port_t);
conn_info_t *& find_p(ip_port_t); //be aware,the adress may change after rehash conn_info_t *& find_p(ip_port_t); //be aware,the adress may change after rehash
conn_info_t & find(ip_port_t) ; //be aware,the adress may change after rehash conn_info_t & find(ip_port_t) ; //be aware,the adress may change after rehash
int insert(ip_port_t); int insert(ip_port_t);
int erase(unordered_map<u64_t,conn_info_t*>::iterator erase_it); int erase(unordered_map<u64_t,conn_info_t*>::iterator erase_it);
int clear_inactive(); int clear_inactive();
int clear_inactive0(); int clear_inactive0();
};*/ };*/
struct conn_manager_t //manager for connections. for client,we dont need conn_manager since there is only one connection.for server we use one conn_manager for all connections struct conn_manager_t // manager for connections. for client,we dont need conn_manager since there is only one connection.for server we use one conn_manager for all connections
{ {
unordered_map<address_t, conn_info_t *> mp; // put it at end so that it de-consturcts first
unordered_map<address_t, conn_info_t *>::iterator clear_it;
long long last_clear_time;
unordered_map<address_t,conn_info_t*> mp; //put it at end so that it de-consturcts first conn_manager_t();
unordered_map<address_t,conn_info_t*>::iterator clear_it; int exist(address_t addr);
conn_info_t *&find_insert_p(address_t addr); // be aware,the adress may change after rehash //not true?
long long last_clear_time; conn_info_t &find_insert(address_t addr); // be aware,the adress may change after rehash
conn_manager_t();
int exist(address_t addr);
conn_info_t *& find_insert_p(address_t addr); //be aware,the adress may change after rehash //not true?
conn_info_t & find_insert(address_t addr) ; //be aware,the adress may change after rehash
int erase(unordered_map<address_t,conn_info_t*>::iterator erase_it);
int clear_inactive();
int clear_inactive0();
int erase(unordered_map<address_t, conn_info_t *>::iterator erase_it);
int clear_inactive();
int clear_inactive0();
}; };
extern conn_manager_t conn_manager; extern conn_manager_t conn_manager;
#endif /* CONNECTION_H_ */ #endif /* CONNECTION_H_ */

View File

@ -8,125 +8,106 @@
#include "log.h" #include "log.h"
#include "packet.h" #include "packet.h"
int delay_data_t::handle() int delay_data_t::handle() {
{ return my_send(dest, data, len) >= 0;
return my_send(dest,data,len)>=0;
} }
delay_manager_t::delay_manager_t() {
capacity = 0;
delay_manager_t::delay_manager_t() // if ((timer_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK)) < 0)
{ //{
capacity=0; // mylog(log_fatal,"timer_fd create error");
// myexit(1);
// }
//if ((timer_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK)) < 0) // itimerspec zero_its;
//{ // memset(&zero_its, 0, sizeof(zero_its));
// mylog(log_fatal,"timer_fd create error");
// myexit(1);
//}
//itimerspec zero_its;
//memset(&zero_its, 0, sizeof(zero_its));
//timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0);
// timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0);
} }
delay_manager_t::~delay_manager_t() delay_manager_t::~delay_manager_t() {
{ // TODO ,we currently dont need to deconstruct it
//TODO ,we currently dont need to deconstruct it
} }
/* /*
int delay_manager_t::get_timer_fd() int delay_manager_t::get_timer_fd()
{ {
return timer_fd; return timer_fd;
}*/ }*/
//int add(my_time_t delay,const dest_t &dest,const char *data,int len); // int add(my_time_t delay,const dest_t &dest,const char *data,int len);
int delay_manager_t::add(my_time_t delay,const dest_t &dest,char *data,int len) int delay_manager_t::add(my_time_t delay, const dest_t &dest, char *data, int len) {
{ delay_data_t delay_data;
delay_data_t delay_data; delay_data.dest = dest;
delay_data.dest=dest; // delay_data.data=data;
//delay_data.data=data; delay_data.len = len;
delay_data.len=len;
if(capacity!=0&&int(delay_mp.size()) >=capacity) if (capacity != 0 && int(delay_mp.size()) >= capacity) {
{ mylog(log_warn, "max pending packet reached,ignored\n");
mylog(log_warn,"max pending packet reached,ignored\n"); return -1;
return -1; }
} if (delay == 0) {
if(delay==0) static char buf[buf_len];
{ delay_data.data = buf;
static char buf[buf_len]; memcpy(buf, data, len);
delay_data.data=buf; int ret = delay_data.handle();
memcpy(buf,data,len); if (ret != 0) {
int ret=delay_data.handle(); mylog(log_trace, "handle() return %d\n", ret);
if (ret != 0) { }
mylog(log_trace, "handle() return %d\n", ret); return 0;
} }
return 0;
}
delay_data_t tmp=delay_data; delay_data_t tmp = delay_data;
tmp.data=(char *)malloc(delay_data.len+100); tmp.data = (char *)malloc(delay_data.len + 100);
if(!tmp.data) if (!tmp.data) {
{
mylog(log_warn, "malloc() returned null in delay_manager_t::add()"); mylog(log_warn, "malloc() returned null in delay_manager_t::add()");
return -1; return -1;
} }
memcpy(tmp.data,data,delay_data.len); memcpy(tmp.data, data, delay_data.len);
my_time_t tmp_time=get_current_time_us(); my_time_t tmp_time = get_current_time_us();
tmp_time+=delay; tmp_time += delay;
delay_mp.insert(make_pair(tmp_time,tmp)); delay_mp.insert(make_pair(tmp_time, tmp));
////check(); check everytime when add, is it better ?? ////check(); check everytime when add, is it better ??
return 0; return 0;
} }
int delay_manager_t::check() int delay_manager_t::check() {
{ if (!delay_mp.empty()) {
if(!delay_mp.empty()) my_time_t current_time;
{
my_time_t current_time;
multimap<my_time_t,delay_data_t>::iterator it; multimap<my_time_t, delay_data_t>::iterator it;
while(1) while (1) {
{ int ret = 0;
int ret=0; it = delay_mp.begin();
it=delay_mp.begin(); if (it == delay_mp.end()) break;
if(it==delay_mp.end()) break;
current_time=get_current_time_us(); current_time = get_current_time_us();
if(it->first <= current_time) if (it->first <= current_time) {
{ ret = it->second.handle();
ret=it->second.handle(); if (ret != 0) {
if (ret != 0) { mylog(log_trace, "handle() return %d\n", ret);
mylog(log_trace, "handle() return %d\n", ret); }
} free(it->second.data);
free(it->second.data); delay_mp.erase(it);
delay_mp.erase(it); } else {
} break;
else }
{ }
break; if (!delay_mp.empty()) {
} const double m = 1000 * 1000;
double timer_value = delay_mp.begin()->first / m - get_current_time_us() / m; // be aware of negative value, and be aware of uint
} if (timer_value < 0) timer_value = 0; // set it to 0 if negative, although libev support negative value
if(!delay_mp.empty()) ev_timer_stop(loop, &timer);
{ ev_timer_set(&timer, timer_value, 0);
const double m=1000*1000; ev_timer_start(loop, &timer);
double timer_value=delay_mp.begin()->first/m -get_current_time_us()/m; // be aware of negative value, and be aware of uint } else {
if(timer_value<0) timer_value=0; // set it to 0 if negative, although libev support negative value ev_timer_stop(loop, &timer); // not necessary
ev_timer_stop(loop, &timer); }
ev_timer_set(&timer, timer_value,0 ); }
ev_timer_start(loop, &timer); return 0;
}
else
{
ev_timer_stop(loop, &timer); //not necessary
}
}
return 0;
} }

View File

@ -12,132 +12,130 @@
#include "packet.h" #include "packet.h"
#include "log.h" #include "log.h"
//enum delay_type_t {none=0,enum_sendto_u64,enum_send_fd,client_to_local,client_to_remote,server_to_local,server_to_remote}; // enum delay_type_t {none=0,enum_sendto_u64,enum_send_fd,client_to_local,client_to_remote,server_to_local,server_to_remote};
/* /*
struct fd_ip_port_t struct fd_ip_port_t
{ {
int fd; int fd;
u32_t ip; u32_t ip;
u32_t port; u32_t port;
}; };
union dest_t union dest_t
{ {
fd_ip_port_t fd_ip_port; fd_ip_port_t fd_ip_port;
int fd; int fd;
u64_t u64; u64_t u64;
}; };
*/ */
/* /*
struct my_timer_t struct my_timer_t
{ {
int timer_fd; int timer_fd;
fd64_t timer_fd64; fd64_t timer_fd64;
my_timer_t() my_timer_t()
{ {
if ((timer_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK)) < 0) if ((timer_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK)) < 0)
{ {
mylog(log_fatal,"timer_fd create error"); mylog(log_fatal,"timer_fd create error");
myexit(1); myexit(1);
} }
timer_fd64=fd_manager.create(timer_fd); timer_fd64=fd_manager.create(timer_fd);
} }
my_timer_t(const my_timer_t &b) my_timer_t(const my_timer_t &b)
{ {
assert(0==1); assert(0==1);
} }
~my_timer_t() ~my_timer_t()
{ {
fd_manager.fd64_close(timer_fd64); fd_manager.fd64_close(timer_fd64);
} }
int add_fd_to_epoll(int epoll_fd) int add_fd_to_epoll(int epoll_fd)
{ {
epoll_event ev;; epoll_event ev;;
ev.events = EPOLLIN; ev.events = EPOLLIN;
ev.data.u64 = timer_fd; ev.data.u64 = timer_fd;
int ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, timer_fd, &ev); int ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, timer_fd, &ev);
if (ret!= 0) { if (ret!= 0) {
mylog(log_fatal,"add delay_manager.get_timer_fd() error\n"); mylog(log_fatal,"add delay_manager.get_timer_fd() error\n");
myexit(-1); myexit(-1);
} }
return 0; return 0;
} }
int add_fd64_to_epoll(int epoll_fd) int add_fd64_to_epoll(int epoll_fd)
{ {
epoll_event ev;; epoll_event ev;;
ev.events = EPOLLIN; ev.events = EPOLLIN;
ev.data.u64 = timer_fd64; ev.data.u64 = timer_fd64;
int ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, timer_fd, &ev); int ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, timer_fd, &ev);
if (ret!= 0) { if (ret!= 0) {
mylog(log_fatal,"add delay_manager.get_timer_fd() error\n"); mylog(log_fatal,"add delay_manager.get_timer_fd() error\n");
myexit(-1); myexit(-1);
} }
return 0; return 0;
} }
int get_timer_fd() int get_timer_fd()
{ {
return timer_fd; return timer_fd;
} }
fd64_t get_timer_fd64() fd64_t get_timer_fd64()
{ {
return timer_fd64; return timer_fd64;
} }
int set_timer_repeat_us(my_time_t my_time) int set_timer_repeat_us(my_time_t my_time)
{ {
itimerspec its; itimerspec its;
memset(&its,0,sizeof(its)); memset(&its,0,sizeof(its));
its.it_interval.tv_sec=my_time/1000000llu; its.it_interval.tv_sec=my_time/1000000llu;
its.it_interval.tv_nsec=my_time%1000000llu*1000llu; its.it_interval.tv_nsec=my_time%1000000llu*1000llu;
its.it_value.tv_nsec=1; //imidiately its.it_value.tv_nsec=1; //imidiately
timerfd_settime(timer_fd,0,&its,0); timerfd_settime(timer_fd,0,&its,0);
return 0; return 0;
} }
int set_timer_abs_us(my_time_t my_time) int set_timer_abs_us(my_time_t my_time)
{ {
itimerspec its; itimerspec its;
memset(&its,0,sizeof(its)); memset(&its,0,sizeof(its));
its.it_value.tv_sec=my_time/1000000llu; its.it_value.tv_sec=my_time/1000000llu;
its.it_value.tv_nsec=my_time%1000000llu*1000llu; its.it_value.tv_nsec=my_time%1000000llu*1000llu;
timerfd_settime(timer_fd,TFD_TIMER_ABSTIME,&its,0); timerfd_settime(timer_fd,TFD_TIMER_ABSTIME,&its,0);
return 0; return 0;
} }
};*/ };*/
struct delay_data_t {
struct delay_data_t dest_t dest;
{ // int left_time;//
dest_t dest; char *data;
//int left_time;// int len;
char * data; int handle();
int len;
int handle();
}; };
struct delay_manager_t struct delay_manager_t {
{ ev_timer timer;
ev_timer timer; struct ev_loop *loop = 0;
struct ev_loop *loop=0; void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents) = 0;
void (*cb) (struct ev_loop *loop, struct ev_timer *watcher, int revents)=0;
//int timer_fd; // int timer_fd;
int capacity; int capacity;
multimap<my_time_t,delay_data_t> delay_mp; //unit us,1 us=0.001ms multimap<my_time_t, delay_data_t> delay_mp; // unit us,1 us=0.001ms
delay_manager_t(); delay_manager_t();
delay_manager_t(delay_manager_t &b) delay_manager_t(delay_manager_t &b) {
{ assert(0 == 1);
assert(0==1); }
} void set_loop_and_cb(struct ev_loop *loop, void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents)) {
void set_loop_and_cb(struct ev_loop *loop,void (*cb) (struct ev_loop *loop, struct ev_timer *watcher, int revents)) this->loop = loop;
{ this->cb = cb;
this->loop=loop; ev_init(&timer, cb);
this->cb=cb; }
ev_init(&timer,cb); int set_capacity(int a) {
} capacity = a;
int set_capacity(int a){capacity=a;return 0;} return 0;
~delay_manager_t(); }
ev_timer& get_timer(); ~delay_manager_t();
int check(); ev_timer &get_timer();
int add(my_time_t delay,const dest_t &dest,char *data,int len); int check();
int add(my_time_t delay, const dest_t &dest, char *data, int len);
}; };
#endif /* DELAY_MANAGER_H_ */ #endif /* DELAY_MANAGER_H_ */

View File

@ -5,59 +5,48 @@
* Author: root * Author: root
*/ */
#include "fd_manager.h" #include "fd_manager.h"
int fd_manager_t::fd_exist(int fd) int fd_manager_t::fd_exist(int fd) {
{ return fd_to_fd64_mp.find(fd) != fd_to_fd64_mp.end();
return fd_to_fd64_mp.find(fd)!=fd_to_fd64_mp.end();
} }
int fd_manager_t::exist(fd64_t fd64) int fd_manager_t::exist(fd64_t fd64) {
{ return fd64_to_fd_mp.find(fd64) != fd64_to_fd_mp.end();
return fd64_to_fd_mp.find(fd64)!=fd64_to_fd_mp.end();
} }
int fd_manager_t::to_fd(fd64_t fd64) int fd_manager_t::to_fd(fd64_t fd64) {
{ assert(exist(fd64));
assert(exist(fd64)); return fd64_to_fd_mp[fd64];
return fd64_to_fd_mp[fd64];
} }
void fd_manager_t::fd64_close(fd64_t fd64) void fd_manager_t::fd64_close(fd64_t fd64) {
{ assert(exist(fd64));
assert(exist(fd64)); int fd = fd64_to_fd_mp[fd64];
int fd=fd64_to_fd_mp[fd64]; fd64_to_fd_mp.erase(fd64);
fd64_to_fd_mp.erase(fd64); fd_to_fd64_mp.erase(fd);
fd_to_fd64_mp.erase(fd); if (exist_info(fd64)) {
if(exist_info(fd64)) fd_info_mp.erase(fd64);
{ }
fd_info_mp.erase(fd64); sock_close(fd);
}
sock_close(fd);
} }
void fd_manager_t::reserve(int n) void fd_manager_t::reserve(int n) {
{ fd_to_fd64_mp.reserve(n);
fd_to_fd64_mp.reserve(n); fd64_to_fd_mp.reserve(n);
fd64_to_fd_mp.reserve(n); fd_info_mp.reserve(n);
fd_info_mp.reserve(n);
} }
u64_t fd_manager_t::create(int fd) u64_t fd_manager_t::create(int fd) {
{ assert(!fd_exist(fd));
assert(!fd_exist(fd)); fd64_t fd64 = counter++;
fd64_t fd64=counter++; fd_to_fd64_mp[fd] = fd64;
fd_to_fd64_mp[fd]=fd64; fd64_to_fd_mp[fd64] = fd;
fd64_to_fd_mp[fd64]=fd; return fd64;
return fd64;
} }
fd_manager_t::fd_manager_t() fd_manager_t::fd_manager_t() {
{ counter = u32_t(-1);
counter=u32_t(-1); counter += 100;
counter+=100; reserve(10007);
reserve(10007);
} }
fd_info_t & fd_manager_t::get_info(fd64_t fd64) fd_info_t& fd_manager_t::get_info(fd64_t fd64) {
{ assert(exist(fd64));
assert(exist(fd64)); return fd_info_mp[fd64];
return fd_info_mp[fd64];
} }
int fd_manager_t::exist_info(fd64_t fd64) int fd_manager_t::exist_info(fd64_t fd64) {
{ return fd_info_mp.find(fd64) != fd_info_mp.end();
return fd_info_mp.find(fd64)!=fd_info_mp.end();
} }

View File

@ -11,27 +11,26 @@
#include "common.h" #include "common.h"
#include "packet.h" #include "packet.h"
struct fd_manager_t // conver fd to a uniq 64bit number,avoid fd value conflict caused by close and re-create
// this class is not strictly necessary,it just makes epoll fd handling easier
struct fd_manager_t //conver fd to a uniq 64bit number,avoid fd value conflict caused by close and re-create
//this class is not strictly necessary,it just makes epoll fd handling easier
{ {
fd_info_t & get_info(fd64_t fd64); fd_info_t& get_info(fd64_t fd64);
int exist_info(fd64_t); int exist_info(fd64_t);
int exist(fd64_t fd64); int exist(fd64_t fd64);
int to_fd(fd64_t); int to_fd(fd64_t);
void fd64_close(fd64_t fd64); void fd64_close(fd64_t fd64);
void reserve(int n); void reserve(int n);
u64_t create(int fd); u64_t create(int fd);
fd_manager_t(); fd_manager_t();
private:
u64_t counter; private:
unordered_map<int,fd64_t> fd_to_fd64_mp; u64_t counter;
unordered_map<fd64_t,int> fd64_to_fd_mp; unordered_map<int, fd64_t> fd_to_fd64_mp;
unordered_map<fd64_t,fd_info_t> fd_info_mp; unordered_map<fd64_t, int> fd64_to_fd_mp;
int fd_exist(int fd); unordered_map<fd64_t, fd_info_t> fd_info_mp;
//void remove_fd(int fd); int fd_exist(int fd);
//fd64_t fd_to_fd64(int fd); // void remove_fd(int fd);
// fd64_t fd_to_fd64(int fd);
}; };
extern fd_manager_t fd_manager; extern fd_manager_t fd_manager;

File diff suppressed because it is too large Load Diff

View File

@ -12,483 +12,426 @@
#include "log.h" #include "log.h"
#include "lib/rs.h" #include "lib/rs.h"
const int max_blob_packet_num=30000;//how many packet can be contain in a blob_t ,can be set very large const int max_blob_packet_num = 30000; // how many packet can be contain in a blob_t ,can be set very large
const u32_t anti_replay_buff_size=30000;//can be set very large const u32_t anti_replay_buff_size = 30000; // can be set very large
const int max_fec_packet_num=255;// this is the limitation of the rs lib const int max_fec_packet_num = 255; // this is the limitation of the rs lib
extern u32_t fec_buff_num; extern u32_t fec_buff_num;
const int rs_str_len=max_fec_packet_num*10+100; const int rs_str_len = max_fec_packet_num * 10 + 100;
extern int header_overhead; extern int header_overhead;
extern int debug_fec_enc; extern int debug_fec_enc;
extern int debug_fec_dec; extern int debug_fec_dec;
struct fec_parameter_t struct fec_parameter_t {
{ int version = 0;
int version=0; int mtu = default_mtu;
int mtu=default_mtu; int queue_len = 200;
int queue_len=200; int timeout = 8 * 1000;
int timeout=8*1000; int mode = 0;
int mode=0;
int rs_cnt=0; int rs_cnt = 0;
struct rs_parameter_t //parameters for reed solomon struct rs_parameter_t // parameters for reed solomon
{ {
unsigned char x;//AKA fec_data_num (x should be same as <index of rs_par>+1 at the moment) unsigned char x; // AKA fec_data_num (x should be same as <index of rs_par>+1 at the moment)
unsigned char y;//fec_redundant_num unsigned char y; // fec_redundant_num
}rs_par[max_fec_packet_num+10]; } rs_par[max_fec_packet_num + 10];
int rs_from_str(char * s)//todo inefficient int rs_from_str(char *s) // todo inefficient
{ {
vector<string> str_vec=string_to_vec(s,","); vector<string> str_vec = string_to_vec(s, ",");
if(str_vec.size()<1) if (str_vec.size() < 1) {
{ mylog(log_warn, "failed to parse [%s]\n", s);
mylog(log_warn,"failed to parse [%s]\n",s); return -1;
return -1; }
} vector<rs_parameter_t> par_vec;
vector<rs_parameter_t> par_vec; for (int i = 0; i < (int)str_vec.size(); i++) {
for(int i=0;i<(int)str_vec.size();i++) rs_parameter_t tmp_par;
{ string &tmp_str = str_vec[i];
rs_parameter_t tmp_par; int x, y;
string &tmp_str=str_vec[i]; if (sscanf((char *)tmp_str.c_str(), "%d:%d", &x, &y) != 2) {
int x,y; mylog(log_warn, "failed to parse [%s]\n", tmp_str.c_str());
if(sscanf((char *)tmp_str.c_str(),"%d:%d",&x,&y)!=2) return -1;
{ }
mylog(log_warn,"failed to parse [%s]\n",tmp_str.c_str()); if (x < 1 || y < 0 || x + y > max_fec_packet_num) {
return -1; mylog(log_warn, "invaild value x=%d y=%d, x should >=1, y should >=0, x +y should <%d\n", x, y, max_fec_packet_num);
} return -1;
if(x<1||y<0||x+y>max_fec_packet_num) }
{ tmp_par.x = x;
mylog(log_warn,"invaild value x=%d y=%d, x should >=1, y should >=0, x +y should <%d\n",x,y,max_fec_packet_num); tmp_par.y = y;
return -1; par_vec.push_back(tmp_par);
} }
tmp_par.x=x; assert(par_vec.size() == str_vec.size());
tmp_par.y=y;
par_vec.push_back(tmp_par);
}
assert(par_vec.size()==str_vec.size());
int found_problem=0; int found_problem = 0;
for(int i=1;i<(int)par_vec.size();i++) for (int i = 1; i < (int)par_vec.size(); i++) {
{ if (par_vec[i].x <= par_vec[i - 1].x) {
if(par_vec[i].x<=par_vec[i-1].x) mylog(log_warn, "error in [%s], x in x:y should be in ascend order\n", s);
{ return -1;
mylog(log_warn,"error in [%s], x in x:y should be in ascend order\n",s); }
return -1; int now_x = par_vec[i].x;
} int now_y = par_vec[i].y;
int now_x=par_vec[i].x; int pre_x = par_vec[i - 1].x;
int now_y=par_vec[i].y; int pre_y = par_vec[i - 1].y;
int pre_x=par_vec[i-1].x;
int pre_y=par_vec[i-1].y;
double now_ratio=double(par_vec[i].y)/par_vec[i].x; double now_ratio = double(par_vec[i].y) / par_vec[i].x;
double pre_ratio=double(par_vec[i-1].y)/par_vec[i-1].x; double pre_ratio = double(par_vec[i - 1].y) / par_vec[i - 1].x;
if(pre_ratio+0.0001<now_ratio) if (pre_ratio + 0.0001 < now_ratio) {
{ if (found_problem == 0) {
if(found_problem==0) mylog(log_warn, "possible problems: %d/%d<%d/%d", pre_y, pre_x, now_y, now_x);
{ found_problem = 1;
mylog(log_warn,"possible problems: %d/%d<%d/%d",pre_y,pre_x,now_y,now_x); } else {
found_problem=1; log_bare(log_warn, ", %d/%d<%d/%d", pre_y, pre_x, now_y, now_x);
} }
else }
{ }
log_bare(log_warn,", %d/%d<%d/%d",pre_y,pre_x,now_y,now_x); if (found_problem) {
} log_bare(log_warn, " in %s\n", s);
} }
}
if(found_problem)
{
log_bare(log_warn," in %s\n",s);
}
{ //special treatment for first parameter { // special treatment for first parameter
int x=par_vec[0].x; int x = par_vec[0].x;
int y=par_vec[0].y; int y = par_vec[0].y;
for(int i=1;i<=x;i++) for (int i = 1; i <= x; i++) {
{ rs_par[i - 1].x = i;
rs_par[i-1].x=i; rs_par[i - 1].y = y;
rs_par[i-1].y=y; }
} }
}
for(int i=1;i<(int)par_vec.size();i++) for (int i = 1; i < (int)par_vec.size(); i++) {
{ int now_x = par_vec[i].x;
int now_x=par_vec[i].x; int now_y = par_vec[i].y;
int now_y=par_vec[i].y; int pre_x = par_vec[i - 1].x;
int pre_x=par_vec[i-1].x; int pre_y = par_vec[i - 1].y;
int pre_y=par_vec[i-1].y; rs_par[now_x - 1].x = now_x;
rs_par[now_x-1].x=now_x; rs_par[now_x - 1].y = now_y;
rs_par[now_x-1].y=now_y;
double now_ratio=double(par_vec[i].y)/par_vec[i].x; double now_ratio = double(par_vec[i].y) / par_vec[i].x;
double pre_ratio=double(par_vec[i-1].y)/par_vec[i-1].x; double pre_ratio = double(par_vec[i - 1].y) / par_vec[i - 1].x;
//double k= double(now_y-pre_y)/double(now_x-pre_x); // double k= double(now_y-pre_y)/double(now_x-pre_x);
for(int j=pre_x+1;j<=now_x-1;j++) for (int j = pre_x + 1; j <= now_x - 1; j++) {
{ int in_x = j;
int in_x=j;
//////// int in_y= double(pre_y) + double(in_x-pre_x)*k+ 0.9999;// round to upper //////// int in_y= double(pre_y) + double(in_x-pre_x)*k+ 0.9999;// round to upper
double distance=now_x-pre_x; double distance = now_x - pre_x;
/////// double in_ratio=pre_ratio*(1.0-(in_x-pre_x)/distance) + now_ratio *(1.0- (now_x-in_x)/distance); /////// double in_ratio=pre_ratio*(1.0-(in_x-pre_x)/distance) + now_ratio *(1.0- (now_x-in_x)/distance);
////// int in_y= in_x*in_ratio + 0.9999; ////// int in_y= in_x*in_ratio + 0.9999;
int in_y= pre_y +(now_y-pre_y) *(in_x-pre_x)/distance +0.9999; int in_y = pre_y + (now_y - pre_y) * (in_x - pre_x) / distance + 0.9999;
if(in_x+in_y>max_fec_packet_num) if (in_x + in_y > max_fec_packet_num) {
{ in_y = max_fec_packet_num - in_x;
in_y=max_fec_packet_num-in_x; assert(in_y >= 0 && in_y <= max_fec_packet_num);
assert(in_y>=0&&in_y<=max_fec_packet_num); }
}
rs_par[in_x-1].x=in_x; rs_par[in_x - 1].x = in_x;
rs_par[in_x-1].y=in_y; rs_par[in_x - 1].y = in_y;
} }
} }
rs_cnt=par_vec[par_vec.size()-1].x; rs_cnt = par_vec[par_vec.size() - 1].x;
return 0; return 0;
} }
char *rs_to_str()//todo inefficient char *rs_to_str() // todo inefficient
{ {
static char res[rs_str_len]; static char res[rs_str_len];
string tmp_string; string tmp_string;
char tmp_buf[100]; char tmp_buf[100];
assert(rs_cnt>=1); assert(rs_cnt >= 1);
for(int i=0;i<rs_cnt;i++) for (int i = 0; i < rs_cnt; i++) {
{ sprintf(tmp_buf, "%d:%d", int(rs_par[i].x), int(rs_par[i].y));
sprintf(tmp_buf,"%d:%d",int(rs_par[i].x),int(rs_par[i].y)); if (i != 0)
if(i!=0) tmp_string += ",";
tmp_string+=","; tmp_string += tmp_buf;
tmp_string+=tmp_buf; }
} strcpy(res, tmp_string.c_str());
strcpy(res,tmp_string.c_str()); return res;
return res; }
}
rs_parameter_t get_tail() rs_parameter_t get_tail() {
{ assert(rs_cnt >= 1);
assert(rs_cnt>=1); return rs_par[rs_cnt - 1];
return rs_par[rs_cnt-1]; }
}
int clone(fec_parameter_t &other) {
version = other.version;
mtu = other.mtu;
queue_len = other.queue_len;
timeout = other.timeout;
mode = other.mode;
int clone(fec_parameter_t & other) assert(other.rs_cnt >= 1);
{ rs_cnt = other.rs_cnt;
version=other.version; memcpy(rs_par, other.rs_par, sizeof(rs_parameter_t) * rs_cnt);
mtu=other.mtu;
queue_len=other.queue_len;
timeout=other.timeout;
mode=other.mode;
assert(other.rs_cnt>=1); return 0;
rs_cnt=other.rs_cnt; }
memcpy(rs_par,other.rs_par,sizeof(rs_parameter_t)*rs_cnt);
return 0; int copy_fec(fec_parameter_t &other) {
} assert(other.rs_cnt >= 1);
rs_cnt = other.rs_cnt;
memcpy(rs_par, other.rs_par, sizeof(rs_parameter_t) * rs_cnt);
int copy_fec(fec_parameter_t & other) return 0;
{ }
assert(other.rs_cnt>=1);
rs_cnt=other.rs_cnt;
memcpy(rs_par,other.rs_par,sizeof(rs_parameter_t)*rs_cnt);
return 0;
}
}; };
extern fec_parameter_t g_fec_par; extern fec_parameter_t g_fec_par;
//extern int dynamic_update_fec; // extern int dynamic_update_fec;
const int anti_replay_timeout=120*1000;// 120s const int anti_replay_timeout = 120 * 1000; // 120s
struct anti_replay_t struct anti_replay_t {
{ struct info_t {
my_time_t my_time;
int index;
};
struct info_t u64_t replay_buffer[anti_replay_buff_size];
{ unordered_map<u32_t, info_t> mp;
my_time_t my_time; int index;
int index; anti_replay_t() {
}; clear();
}
int clear() {
memset(replay_buffer, -1, sizeof(replay_buffer));
mp.clear();
mp.rehash(anti_replay_buff_size * 3);
index = 0;
return 0;
}
void set_invaild(u32_t seq) {
if (is_vaild(seq) == 0) {
mylog(log_trace, "seq %u exist\n", seq);
// assert(mp.find(seq)!=mp.end());
// mp[seq].my_time=get_current_time_rough();
return;
}
if (replay_buffer[index] != u64_t(i64_t(-1))) {
assert(mp.find(replay_buffer[index]) != mp.end());
mp.erase(replay_buffer[index]);
}
replay_buffer[index] = seq;
assert(mp.find(seq) == mp.end());
mp[seq].my_time = get_current_time();
mp[seq].index = index;
index++;
if (index == int(anti_replay_buff_size)) index = 0;
}
int is_vaild(u32_t seq) {
if (mp.find(seq) == mp.end()) return 1;
u64_t replay_buffer[anti_replay_buff_size]; if (get_current_time() - mp[seq].my_time > anti_replay_timeout) {
unordered_map<u32_t,info_t> mp; replay_buffer[mp[seq].index] = u64_t(i64_t(-1));
int index; mp.erase(seq);
anti_replay_t() return 1;
{ }
clear();
}
int clear()
{
memset(replay_buffer,-1,sizeof(replay_buffer));
mp.clear();
mp.rehash(anti_replay_buff_size*3);
index=0;
return 0;
}
void set_invaild(u32_t seq)
{
if(is_vaild(seq)==0) return 0;
{ }
mylog(log_trace,"seq %u exist\n",seq);
//assert(mp.find(seq)!=mp.end());
//mp[seq].my_time=get_current_time_rough();
return;
}
if(replay_buffer[index]!=u64_t(i64_t(-1)))
{
assert(mp.find(replay_buffer[index])!=mp.end());
mp.erase(replay_buffer[index]);
}
replay_buffer[index]=seq;
assert(mp.find(seq)==mp.end());
mp[seq].my_time=get_current_time();
mp[seq].index=index;
index++;
if(index==int(anti_replay_buff_size)) index=0;
}
int is_vaild(u32_t seq)
{
if(mp.find(seq)==mp.end()) return 1;
if(get_current_time()-mp[seq].my_time>anti_replay_timeout)
{
replay_buffer[mp[seq].index]=u64_t(i64_t(-1));
mp.erase(seq);
return 1;
}
return 0;
}
}; };
struct blob_encode_t struct blob_encode_t {
{ char input_buf[(max_fec_packet_num + 5) * buf_len];
char input_buf[(max_fec_packet_num+5)*buf_len]; int current_len;
int current_len; int counter;
int counter;
char *output_buf[max_fec_packet_num+100]; char *output_buf[max_fec_packet_num + 100];
blob_encode_t(); blob_encode_t();
int clear(); int clear();
int get_num(); int get_num();
int get_shard_len(int n); int get_shard_len(int n);
int get_shard_len(int n,int next_packet_len); int get_shard_len(int n, int next_packet_len);
int input(char *s,int len); //len=use len=0 for second and following packet int input(char *s, int len); // len=use len=0 for second and following packet
int output(int n,char ** &s_arr,int & len); int output(int n, char **&s_arr, int &len);
}; };
struct blob_decode_t struct blob_decode_t {
{ char input_buf[(max_fec_packet_num + 5) * buf_len];
char input_buf[(max_fec_packet_num+5)*buf_len]; int current_len;
int current_len; int last_len;
int last_len; int counter;
int counter;
char *output_buf[max_blob_packet_num+100]; char *output_buf[max_blob_packet_num + 100];
int output_len[max_blob_packet_num+100]; int output_len[max_blob_packet_num + 100];
blob_decode_t(); blob_decode_t();
int clear(); int clear();
int input(char *input,int len); int input(char *input, int len);
int output(int &n,char ** &output,int *&len_arr); int output(int &n, char **&output, int *&len_arr);
}; };
class fec_encode_manager_t:not_copy_able_t class fec_encode_manager_t : not_copy_able_t {
{ private:
u32_t seq;
private: // int fec_mode;
u32_t seq; // int fec_data_num,fec_redundant_num;
// int fec_mtu;
// int fec_queue_len;
// int fec_timeout;
fec_parameter_t fec_par;
//int fec_mode; my_time_t first_packet_time;
//int fec_data_num,fec_redundant_num; my_time_t first_packet_time_for_output;
//int fec_mtu;
//int fec_queue_len;
//int fec_timeout;
fec_parameter_t fec_par;
blob_encode_t blob_encode;
char input_buf[max_fec_packet_num + 5][buf_len];
int input_len[max_fec_packet_num + 100];
my_time_t first_packet_time; char *output_buf[max_fec_packet_num + 100];
my_time_t first_packet_time_for_output; int output_len[max_fec_packet_num + 100];
int counter;
// int timer_fd;
// u64_t timer_fd64;
blob_encode_t blob_encode; int ready_for_output;
char input_buf[max_fec_packet_num+5][buf_len]; u32_t output_n;
int input_len[max_fec_packet_num+100];
char *output_buf[max_fec_packet_num+100]; int append(char *s, int len);
int output_len[max_fec_packet_num+100];
int counter; ev_timer timer;
//int timer_fd; struct ev_loop *loop = 0;
//u64_t timer_fd64; void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents) = 0;
int ready_for_output; public:
u32_t output_n; fec_encode_manager_t();
~fec_encode_manager_t();
int append(char *s,int len); fec_parameter_t &get_fec_par() {
return fec_par;
}
void set_data(void *data) {
timer.data = data;
}
ev_timer timer; void set_loop_and_cb(struct ev_loop *loop, void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents)) {
struct ev_loop *loop=0; this->loop = loop;
void (*cb) (struct ev_loop *loop, struct ev_timer *watcher, int revents)=0; this->cb = cb;
ev_init(&timer, cb);
}
public: int clear_data() {
fec_encode_manager_t(); counter = 0;
~fec_encode_manager_t(); blob_encode.clear();
ready_for_output = 0;
fec_parameter_t & get_fec_par() seq = (u32_t)get_fake_random_number(); // TODO temp solution for a bug.
{
return fec_par;
}
void set_data(void * data)
{
timer.data=data;
}
if (loop) {
ev_timer_stop(loop, &timer);
}
return 0;
}
int clear_all() {
// itimerspec zero_its;
// memset(&zero_its, 0, sizeof(zero_its));
// timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0);
void set_loop_and_cb(struct ev_loop *loop,void (*cb) (struct ev_loop *loop, struct ev_timer *watcher, int revents)) if (loop) {
{ ev_timer_stop(loop, &timer);
this->loop=loop; loop = 0;
this->cb=cb; cb = 0;
ev_init(&timer,cb); }
}
int clear_data() clear_data();
{
counter=0;
blob_encode.clear();
ready_for_output=0;
seq=(u32_t)get_fake_random_number(); //TODO temp solution for a bug. return 0;
}
if(loop) my_time_t get_first_packet_time() {
{ return first_packet_time_for_output;
ev_timer_stop(loop,&timer); }
}
return 0;
}
int clear_all()
{
//itimerspec zero_its; int get_pending_time() {
//memset(&zero_its, 0, sizeof(zero_its)); return fec_par.timeout;
//timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0); }
if(loop) int get_type() {
{ return fec_par.mode;
ev_timer_stop(loop,&timer); }
loop=0; // u64_t get_timer_fd64();
cb=0; int reset_fec_parameter(int data_num, int redundant_num, int mtu, int pending_num, int pending_time, int type);
} int input(char *s, int len /*,int &is_first_packet*/);
int output(int &n, char **&s_arr, int *&len);
clear_data();
return 0;
}
my_time_t get_first_packet_time()
{
return first_packet_time_for_output;
}
int get_pending_time()
{
return fec_par.timeout;
}
int get_type()
{
return fec_par.mode;
}
//u64_t get_timer_fd64();
int reset_fec_parameter(int data_num,int redundant_num,int mtu,int pending_num,int pending_time,int type);
int input(char *s,int len/*,int &is_first_packet*/);
int output(int &n,char ** &s_arr,int *&len);
}; };
struct fec_data_t struct fec_data_t {
{ int used;
int used; u32_t seq;
u32_t seq; int type;
int type; int data_num;
int data_num; int redundant_num;
int redundant_num; int idx;
int idx; char buf[buf_len];
char buf[buf_len]; int len;
int len;
}; };
struct fec_group_t struct fec_group_t {
{ int type = -1;
int type=-1; int data_num = -1;
int data_num=-1; int redundant_num = -1;
int redundant_num=-1; int len = -1;
int len=-1; int fec_done = 0;
int fec_done=0; // int data_counter=0;
//int data_counter=0; map<int, int> group_mp;
map<int,int> group_mp;
}; };
class fec_decode_manager_t:not_copy_able_t class fec_decode_manager_t : not_copy_able_t {
{ anti_replay_t anti_replay;
anti_replay_t anti_replay; fec_data_t *fec_data = 0;
fec_data_t *fec_data=0; unordered_map<u32_t, fec_group_t> mp;
unordered_map<u32_t, fec_group_t> mp; blob_decode_t blob_decode;
blob_decode_t blob_decode;
int index; int index;
int output_n; int output_n;
char ** output_s_arr; char **output_s_arr;
int * output_len_arr; int *output_len_arr;
int ready_for_output; int ready_for_output;
char *output_s_arr_buf[max_fec_packet_num+100];//only for type=1,for type=0 the buf inside blot_t is used char *output_s_arr_buf[max_fec_packet_num + 100]; // only for type=1,for type=0 the buf inside blot_t is used
int output_len_arr_buf[max_fec_packet_num+100];//same int output_len_arr_buf[max_fec_packet_num + 100]; // same
public: public:
fec_decode_manager_t() fec_decode_manager_t() {
{ fec_data = new fec_data_t[fec_buff_num + 5];
fec_data=new fec_data_t[fec_buff_num+5]; assert(fec_data != 0);
assert(fec_data!=0); clear();
clear(); }
} /*
/* fec_decode_manager_t(const fec_decode_manager_t &b)
fec_decode_manager_t(const fec_decode_manager_t &b) {
{ assert(0==1);//not allowed to copy
assert(0==1);//not allowed to copy }*/
}*/ ~fec_decode_manager_t() {
~fec_decode_manager_t() mylog(log_debug, "fec_decode_manager destroyed\n");
{ if (fec_data != 0) {
mylog(log_debug,"fec_decode_manager destroyed\n"); mylog(log_debug, "fec_data freed\n");
if(fec_data!=0) delete fec_data;
{ }
mylog(log_debug,"fec_data freed\n"); }
delete fec_data; int clear() {
} anti_replay.clear();
} mp.clear();
int clear() mp.rehash(fec_buff_num * 3);
{
anti_replay.clear();
mp.clear();
mp.rehash(fec_buff_num*3);
for(int i=0;i<(int)fec_buff_num;i++) for (int i = 0; i < (int)fec_buff_num; i++)
fec_data[i].used=0; fec_data[i].used = 0;
ready_for_output=0; ready_for_output = 0;
index=0; index = 0;
return 0; return 0;
} }
//int re_init(); // int re_init();
int input(char *s,int len); int input(char *s, int len);
int output(int &n,char ** &s_arr,int* &len_arr); int output(int &n, char **&s_arr, int *&len_arr);
}; };
#endif /* FEC_MANAGER_H_ */ #endif /* FEC_MANAGER_H_ */

View File

@ -8,69 +8,57 @@
#include "stdlib.h" #include "stdlib.h"
#include "string.h" #include "string.h"
void rs_encode(void *code,char *data[],int size) void rs_encode(void *code, char *data[], int size) {
{ int k = get_k(code);
int k=get_k(code); int n = get_n(code);
int n=get_n(code); for (int i = k; i < n; i++) {
for(int i=k;i<n;i++) fec_encode(code, (void **)data, data[i], i, size);
{ }
fec_encode(code, (void **)data, data[i],i, size);
}
return ; return;
} }
int rs_decode(void *code,char *data[],int size) int rs_decode(void *code, char *data[], int size) {
{ int k = get_k(code);
int k=get_k(code); int n = get_n(code);
int n=get_n(code); int index[n];
int index[n]; int count = 0;
int count=0; for (int i = 0; i < n; i++) {
for(int i=0;i<n;i++) if (data[i] != 0) {
{ index[count++] = i;
if(data[i]!=0) }
{ }
index[count++]=i; if (count < k)
} return -1;
} for (int i = 0; i < n; i++) {
if(count<k) if (i < count)
return -1; data[i] = data[index[i]];
for(int i=0;i<n;i++) else
{ data[i] = 0;
if(i<count) }
data[i]=data[index[i]]; return fec_decode(code, (void **)data, index, size);
else
data[i]=0;
}
return fec_decode(code,(void**)data,index,size);
} }
static void * (*table)[256]=0; static void *(*table)[256] = 0;
void* get_code(int k,int n) void *get_code(int k, int n) {
{ if (table == 0) {
if (table==0) table = (void *(*)[256])malloc(sizeof(void *) * 256 * 256);
{ if (!table) {
table=(void* (*)[256]) malloc(sizeof(void*)*256*256); return table;
if(!table) }
{ memset(table, 0, sizeof(void *) * 256 * 256);
return table; }
} if (table[k][n] == 0) {
memset(table,0,sizeof(void*)*256*256); table[k][n] = fec_new(k, n);
} }
if(table[k][n]==0) return table[k][n];
{
table[k][n]=fec_new(k,n);
}
return table[k][n];
} }
void rs_encode2(int k,int n,char *data[],int size) void rs_encode2(int k, int n, char *data[], int size) {
{ void *code = get_code(k, n);
void* code=get_code(k,n); rs_encode(code, data, size);
rs_encode(code,data,size);
} }
int rs_decode2(int k,int n,char *data[],int size) int rs_decode2(int k, int n, char *data[], int size) {
{ void *code = get_code(k, n);
void* code=get_code(k,n); return rs_decode(code, data, size);
return rs_decode(code,data,size);
} }

View File

@ -20,8 +20,7 @@
// //
// info: // info:
// the function will always succeed,except malloc fail.if malloc fail,it will call exit() // the function will always succeed,except malloc fail.if malloc fail,it will call exit()
void rs_encode(void *code,char *data[],int size); void rs_encode(void *code, char *data[], int size);
// input: // input:
// data[0.....n-1] points to original data and redundate data,in right order // data[0.....n-1] points to original data and redundate data,in right order
@ -37,15 +36,10 @@ void rs_encode(void *code,char *data[],int size);
// advanced info: // advanced info:
// 1. rs_decode wont malloc memory for those zero pointers in data[0.....k-1]. instead it will re-use the memory of other non-zero pointers (and let data[0.....k-1] point to those memory). // 1. rs_decode wont malloc memory for those zero pointers in data[0.....k-1]. instead it will re-use the memory of other non-zero pointers (and let data[0.....k-1] point to those memory).
// 2. if the input data[0.....n-1] contains x non-zero pointers,after called rs_decode,there will still be exactly x non-zero poninters in data[0.....n-1],just the order may change. // 2. if the input data[0.....n-1] contains x non-zero pointers,after called rs_decode,there will still be exactly x non-zero poninters in data[0.....n-1],just the order may change.
int rs_decode(void *code,char *data[],int size); int rs_decode(void *code, char *data[], int size);
void rs_encode2(int k,int n,char *data[],int size);
int rs_decode2(int k,int n,char *data[],int size);
void rs_encode2(int k, int n, char *data[], int size);
int rs_decode2(int k, int n, char *data[], int size);
#endif /* LIB_RS_H_ */ #endif /* LIB_RS_H_ */

88
log.cpp Executable file → Normal file
View File

@ -1,63 +1,57 @@
#include <common.h> #include <common.h>
#include <log.h> #include <log.h>
int log_level=log_info; int log_level = log_info;
int enable_log_position=0; int enable_log_position = 0;
int enable_log_color=1; int enable_log_color = 1;
void log0(const char* file, const char* function, int line, int level, const char* str, ...) {
if (level > log_level) return;
if (level > log_trace || level < 0) return;
void log0(const char * file,const char * function,int line,int level,const char* str, ...) { time_t timer;
char buffer[100];
struct tm* tm_info;
if(level>log_level) return ; time(&timer);
if(level>log_trace||level<0) return ; tm_info = localtime(&timer);
if (enable_log_color)
printf("%s", log_color[level]);
time_t timer; strftime(buffer, 100, "%Y-%m-%d %H:%M:%S", tm_info);
char buffer[100]; printf("[%s][%s]", buffer, log_text[level]);
struct tm* tm_info;
time(&timer); if (enable_log_position) printf("[%s,func:%s,line:%d]", file, function, line);
tm_info = localtime(&timer);
if(enable_log_color) va_list vlist;
printf("%s",log_color[level]); va_start(vlist, str);
vfprintf(stdout, str, vlist);
va_end(vlist);
if (enable_log_color)
printf("%s", RESET);
strftime(buffer, 100, "%Y-%m-%d %H:%M:%S", tm_info); // printf("\n");
printf("[%s][%s]",buffer,log_text[level]); // if(enable_log_color)
// printf(log_color[level]);
fflush(stdout);
if(enable_log_position)printf("[%s,func:%s,line:%d]",file,function,line); if (log_level == log_fatal) {
about_to_exit = 1;
va_list vlist; }
va_start(vlist, str);
vfprintf(stdout, str, vlist);
va_end(vlist);
if(enable_log_color)
printf("%s",RESET);
//printf("\n");
//if(enable_log_color)
//printf(log_color[level]);
fflush(stdout);
if(log_level==log_fatal)
{
about_to_exit=1;
}
} }
void log_bare(int level,const char* str, ...) void log_bare(int level, const char* str, ...) {
{ if (level > log_level) return;
if(level>log_level) return ; if (level > log_trace || level < 0) return;
if(level>log_trace||level<0) return ; if (enable_log_color)
if(enable_log_color) printf("%s", log_color[level]);
printf("%s",log_color[level]); va_list vlist;
va_list vlist; va_start(vlist, str);
va_start(vlist, str); vfprintf(stdout, str, vlist);
vfprintf(stdout, str, vlist); va_end(vlist);
va_end(vlist); if (enable_log_color)
if(enable_log_color) printf("%s", RESET);
printf("%s",RESET); fflush(stdout);
fflush(stdout);
} }

58
log.h Executable file → Normal file
View File

@ -2,60 +2,54 @@
#ifndef _LOG_MYLOG_H_ #ifndef _LOG_MYLOG_H_
#define _LOG_MYLOG_H_ #define _LOG_MYLOG_H_
#include <stdio.h>
#include<stdio.h> #include <string.h>
#include<string.h> #include <stdlib.h>
#include<stdlib.h> #include <getopt.h>
#include<getopt.h>
#include <unistd.h> #include <unistd.h>
#include<errno.h> #include <errno.h>
#include <time.h> #include <time.h>
#include <set> #include <set>
using namespace std; using namespace std;
#define RED "\x1B[31m"
#define RED "\x1B[31m" #define GRN "\x1B[32m"
#define GRN "\x1B[32m" #define YEL "\x1B[33m"
#define YEL "\x1B[33m" #define BLU "\x1B[34m"
#define BLU "\x1B[34m" #define MAG "\x1B[35m"
#define MAG "\x1B[35m" #define CYN "\x1B[36m"
#define CYN "\x1B[36m" #define WHT "\x1B[37m"
#define WHT "\x1B[37m"
#define RESET "\x1B[0m" #define RESET "\x1B[0m"
const int log_never = 0;
const int log_fatal = 1;
const int log_error = 2;
const int log_warn = 3;
const int log_info = 4;
const int log_debug = 5;
const int log_trace = 6;
const int log_end = 7;
const int log_never=0; const char log_text[][20] = {"NEVER", "FATAL", "ERROR", "WARN", "INFO", "DEBUG", "TRACE", ""};
const int log_fatal=1; const char log_color[][20] = {RED, RED, RED, YEL, GRN, MAG, ""};
const int log_error=2;
const int log_warn=3;
const int log_info=4;
const int log_debug=5;
const int log_trace=6;
const int log_end=7;
const char log_text[][20]={"NEVER","FATAL","ERROR","WARN","INFO","DEBUG","TRACE",""};
const char log_color[][20]={RED,RED,RED,YEL,GRN,MAG,""};
extern int log_level; extern int log_level;
extern int enable_log_position; extern int enable_log_position;
extern int enable_log_color; extern int enable_log_color;
#ifdef MY_DEBUG #ifdef MY_DEBUG
#define mylog(__first_argu__dummy_abcde__,...) printf(__VA_ARGS__) #define mylog(__first_argu__dummy_abcde__, ...) printf(__VA_ARGS__)
#else #else
#define mylog(...) log0(__FILE__,__FUNCTION__,__LINE__,__VA_ARGS__) #define mylog(...) log0(__FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#endif #endif
//#define mylog(__first_argu__dummy_abcde__,...) {;} //#define mylog(__first_argu__dummy_abcde__,...) {;}
void log0(const char * file,const char * function,int line,int level,const char* str, ...); void log0(const char* file, const char* function, int line, int level, const char* str, ...);
void log_bare(int level,const char* str, ...);
void log_bare(int level, const char* str, ...);
#endif #endif

209
main.cpp
View File

@ -13,106 +13,97 @@
#include "git_version.h" #include "git_version.h"
using namespace std; using namespace std;
static void print_help() {
char git_version_buf[100] = {0};
strncpy(git_version_buf, gitversion, 10);
static void print_help() printf("UDPspeeder V2\n");
{ printf("git version: %s ", git_version_buf);
char git_version_buf[100]={0}; printf("build date: %s %s\n", __DATE__, __TIME__);
strncpy(git_version_buf,gitversion,10); printf("repository: https://github.com/wangyu-/UDPspeeder\n");
printf("\n");
printf("usage:\n");
printf(" run as client: ./this_program -c -l local_listen_ip:local_port -r server_ip:server_port [options]\n");
printf(" run as server: ./this_program -s -l server_listen_ip:server_port -r remote_ip:remote_port [options]\n");
printf("\n");
printf("common options, must be same on both sides:\n");
printf(" -k,--key <string> key for simple xor encryption. if not set, xor is disabled\n");
printf("UDPspeeder V2\n"); printf("main options:\n");
printf("git version: %s ",git_version_buf); printf(" -f,--fec x:y forward error correction, send y redundant packets for every x packets\n");
printf("build date: %s %s\n",__DATE__,__TIME__); printf(" --timeout <number> how long could a packet be held in queue before doing fec, unit: ms, default: 8ms\n");
printf("repository: https://github.com/wangyu-/UDPspeeder\n"); printf(" --report <number> turn on send/recv report, and set a period for reporting, unit: s\n");
printf("\n");
printf("usage:\n");
printf(" run as client: ./this_program -c -l local_listen_ip:local_port -r server_ip:server_port [options]\n");
printf(" run as server: ./this_program -s -l server_listen_ip:server_port -r remote_ip:remote_port [options]\n");
printf("\n");
printf("common options, must be same on both sides:\n");
printf(" -k,--key <string> key for simple xor encryption. if not set, xor is disabled\n");
printf("main options:\n"); printf("advanced options:\n");
printf(" -f,--fec x:y forward error correction, send y redundant packets for every x packets\n"); printf(" --mode <number> fec-mode,available values: 0,1; mode 0(default) costs less bandwidth,no mtu problem.\n");
printf(" --timeout <number> how long could a packet be held in queue before doing fec, unit: ms, default: 8ms\n"); printf(" mode 1 usually introduces less latency, but you have to care about mtu.\n");
printf(" --report <number> turn on send/recv report, and set a period for reporting, unit: s\n"); printf(" --mtu <number> mtu. for mode 0, the program will split packet to segment smaller than mtu value.\n");
printf(" for mode 1, no packet will be split, the program just check if the mtu is exceed.\n");
printf(" default value: 1250. you typically shouldnt change this value.\n");
printf(" -j,--jitter <number> simulated jitter. randomly delay first packet for 0~<number> ms, default value: 0.\n");
printf(" do not use if you dont know what it means.\n");
printf(" -i,--interval <number> scatter each fec group to a interval of <number> ms, to defend burst packet loss.\n");
printf(" default value: 0. do not use if you dont know what it means.\n");
printf(" -f,--fec x1:y1,x2:y2,.. similiar to -f/--fec above,fine-grained fec parameters,may help save bandwidth.\n");
printf(" example: \"-f 1:3,2:4,10:6,20:10\". check repo for details\n");
printf(" --random-drop <number> simulate packet loss, unit: 0.01%%. default value: 0.\n");
printf(" --disable-obscure <number> disable obscure, to save a bit bandwidth and cpu\n");
printf(" --disable-checksum <number> disable checksum to save a bit bandwdith and cpu\n");
// printf(" --disable-xor <number> disable xor\n");
printf("advanced options:\n"); printf("developer options:\n");
printf(" --mode <number> fec-mode,available values: 0,1; mode 0(default) costs less bandwidth,no mtu problem.\n"); printf(" --fifo <string> use a fifo(named pipe) for sending commands to the running program, so that you\n");
printf(" mode 1 usually introduces less latency, but you have to care about mtu.\n"); printf(" can change fec encode parameters dynamically, check readme.md in repository for\n");
printf(" --mtu <number> mtu. for mode 0, the program will split packet to segment smaller than mtu value.\n"); printf(" supported commands.\n");
printf(" for mode 1, no packet will be split, the program just check if the mtu is exceed.\n"); printf(" -j ,--jitter jmin:jmax similiar to -j above, but create jitter randomly between jmin and jmax\n");
printf(" default value: 1250. you typically shouldnt change this value.\n"); printf(" -i,--interval imin:imax similiar to -i above, but scatter randomly between imin and imax\n");
printf(" -j,--jitter <number> simulated jitter. randomly delay first packet for 0~<number> ms, default value: 0.\n");
printf(" do not use if you dont know what it means.\n");
printf(" -i,--interval <number> scatter each fec group to a interval of <number> ms, to defend burst packet loss.\n");
printf(" default value: 0. do not use if you dont know what it means.\n");
printf(" -f,--fec x1:y1,x2:y2,.. similiar to -f/--fec above,fine-grained fec parameters,may help save bandwidth.\n");
printf(" example: \"-f 1:3,2:4,10:6,20:10\". check repo for details\n");
printf(" --random-drop <number> simulate packet loss, unit: 0.01%%. default value: 0.\n");
printf(" --disable-obscure <number> disable obscure, to save a bit bandwidth and cpu\n");
printf(" --disable-checksum <number> disable checksum to save a bit bandwdith and cpu\n");
//printf(" --disable-xor <number> disable xor\n");
printf("developer options:\n");
printf(" --fifo <string> use a fifo(named pipe) for sending commands to the running program, so that you\n");
printf(" can change fec encode parameters dynamically, check readme.md in repository for\n");
printf(" supported commands.\n");
printf(" -j ,--jitter jmin:jmax similiar to -j above, but create jitter randomly between jmin and jmax\n");
printf(" -i,--interval imin:imax similiar to -i above, but scatter randomly between imin and imax\n");
printf(" -q,--queue-len <number> fec queue len, only for mode 0, fec will be performed immediately after queue is full.\n"); printf(" -q,--queue-len <number> fec queue len, only for mode 0, fec will be performed immediately after queue is full.\n");
printf(" default value: 200. \n"); printf(" default value: 200. \n");
printf(" --decode-buf <number> size of buffer of fec decoder,unit: packet, default: 2000\n"); printf(" --decode-buf <number> size of buffer of fec decoder,unit: packet, default: 2000\n");
// printf(" --fix-latency <number> try to stabilize latency, only for mode 0\n"); // printf(" --fix-latency <number> try to stabilize latency, only for mode 0\n");
printf(" --delay-capacity <number> max number of delayed packets, 0 means unlimited, default: 0\n"); printf(" --delay-capacity <number> max number of delayed packets, 0 means unlimited, default: 0\n");
printf(" --disable-fec <number> completely disable fec, turn the program into a normal udp tunnel\n"); printf(" --disable-fec <number> completely disable fec, turn the program into a normal udp tunnel\n");
printf(" --sock-buf <number> buf size for socket, >=10 and <=10240, unit: kbyte, default: 1024\n"); printf(" --sock-buf <number> buf size for socket, >=10 and <=10240, unit: kbyte, default: 1024\n");
printf(" --out-addr ip:port force all output packets of '-r' end to go through this address, port 0 for random port.\n"); printf(" --out-addr ip:port force all output packets of '-r' end to go through this address, port 0 for random port.\n");
#ifdef __linux__ #ifdef __linux__
printf(" --out-interface <string> force all output packets of '-r' end to go through this interface.\n"); printf(" --out-interface <string> force all output packets of '-r' end to go through this interface.\n");
#endif #endif
printf("log and help options:\n"); printf("log and help options:\n");
printf(" --log-level <number> 0: never 1: fatal 2: error 3: warn \n"); printf(" --log-level <number> 0: never 1: fatal 2: error 3: warn \n");
printf(" 4: info (default) 5: debug 6: trace\n"); printf(" 4: info (default) 5: debug 6: trace\n");
printf(" --log-position enable file name, function name, line number in log\n"); printf(" --log-position enable file name, function name, line number in log\n");
printf(" --disable-color disable log color\n"); printf(" --disable-color disable log color\n");
printf(" -h,--help print this help message\n"); printf(" -h,--help print this help message\n");
//printf("common options,these options must be same on both side\n"); // printf("common options,these options must be same on both side\n");
} }
void sigpipe_cb(struct ev_loop *l, ev_signal *w, int revents) {
void sigpipe_cb(struct ev_loop *l, ev_signal *w, int revents) mylog(log_info, "got sigpipe, ignored");
{
mylog(log_info, "got sigpipe, ignored");
} }
void sigterm_cb(struct ev_loop *l, ev_signal *w, int revents) void sigterm_cb(struct ev_loop *l, ev_signal *w, int revents) {
{ mylog(log_info, "got sigterm, exit");
mylog(log_info, "got sigterm, exit"); myexit(0);
myexit(0);
} }
void sigint_cb(struct ev_loop *l, ev_signal *w, int revents) void sigint_cb(struct ev_loop *l, ev_signal *w, int revents) {
{ mylog(log_info, "got sigint, exit");
mylog(log_info, "got sigint, exit"); myexit(0);
myexit(0);
} }
int main(int argc, char *argv[]) {
working_mode = tunnel_mode;
init_ws();
// unit_test();
struct ev_loop *loop = ev_default_loop(0);
int main(int argc, char *argv[])
{
working_mode=tunnel_mode;
init_ws();
//unit_test();
struct ev_loop* loop=ev_default_loop(0);
#if !defined(__MINGW32__) #if !defined(__MINGW32__)
ev_signal signal_watcher_sigpipe; ev_signal signal_watcher_sigpipe;
ev_signal_init(&signal_watcher_sigpipe, sigpipe_cb, SIGPIPE); ev_signal_init(&signal_watcher_sigpipe, sigpipe_cb, SIGPIPE);
ev_signal_start(loop, &signal_watcher_sigpipe); ev_signal_start(loop, &signal_watcher_sigpipe);
#else #else
enable_log_color=0; enable_log_color = 0;
#endif #endif
ev_signal signal_watcher_sigterm; ev_signal signal_watcher_sigterm;
@ -123,47 +114,39 @@ int main(int argc, char *argv[])
ev_signal_init(&signal_watcher_sigint, sigint_cb, SIGINT); ev_signal_init(&signal_watcher_sigint, sigint_cb, SIGINT);
ev_signal_start(loop, &signal_watcher_sigint); ev_signal_start(loop, &signal_watcher_sigint);
assert(sizeof(u64_t)==8); assert(sizeof(u64_t) == 8);
assert(sizeof(i64_t)==8); assert(sizeof(i64_t) == 8);
assert(sizeof(u32_t)==4); assert(sizeof(u32_t) == 4);
assert(sizeof(i32_t)==4); assert(sizeof(i32_t) == 4);
assert(sizeof(u16_t)==2); assert(sizeof(u16_t) == 2);
assert(sizeof(i16_t)==2); assert(sizeof(i16_t) == 2);
dup2(1, 2); //redirect stderr to stdout dup2(1, 2); // redirect stderr to stdout
int i, j, k; int i, j, k;
if (argc == 1) if (argc == 1) {
{ print_help();
print_help(); myexit(-1);
myexit( -1); }
} for (i = 0; i < argc; i++) {
for (i = 0; i < argc; i++) if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
{ print_help();
if(strcmp(argv[i],"-h")==0||strcmp(argv[i],"--help")==0) myexit(0);
{ }
print_help(); }
myexit(0);
}
}
process_arg(argc,argv); process_arg(argc, argv);
delay_manager.set_capacity(delay_capacity); delay_manager.set_capacity(delay_capacity);
if(strlen(tun_dev)==0) if (strlen(tun_dev) == 0) {
{ sprintf(tun_dev, "tun%u", get_fake_random_number() % 1000);
sprintf(tun_dev,"tun%u",get_fake_random_number()%1000); }
}
if(program_mode==client_mode) if (program_mode == client_mode) {
{ tunnel_client_event_loop();
tunnel_client_event_loop(); } else {
} tunnel_server_event_loop();
else }
{
tunnel_server_event_loop();
}
return 0; return 0;
} }

1736
misc.cpp

File diff suppressed because it is too large Load Diff

21
misc.h
View File

@ -14,8 +14,6 @@
#include "delay_manager.h" #include "delay_manager.h"
#include "fec_manager.h" #include "fec_manager.h"
extern char fifo_file[1000]; extern char fifo_file[1000];
extern int mtu_warn; extern int mtu_warn;
@ -26,7 +24,6 @@ extern int disable_checksum;
extern int debug_force_flush_fec; extern int debug_force_flush_fec;
extern int jitter_min; extern int jitter_min;
extern int jitter_max; extern int jitter_max;
@ -35,12 +32,11 @@ extern int output_interval_max;
extern int fix_latency; extern int fix_latency;
//extern u32_t local_ip_uint32,remote_ip_uint32; // extern u32_t local_ip_uint32,remote_ip_uint32;
//extern char local_ip[100], remote_ip[100]; // extern char local_ip[100], remote_ip[100];
//extern int local_port, remote_port; // extern int local_port, remote_port;
extern address_t local_addr, remote_addr;
extern address_t local_addr,remote_addr;
extern address_t *out_addr; extern address_t *out_addr;
extern char *out_interface; extern char *out_interface;
@ -62,17 +58,16 @@ extern int mssfix;
extern int manual_set_tun; extern int manual_set_tun;
extern int persist_tun; extern int persist_tun;
int from_normal_to_fec(conn_info_t &conn_info, char *data, int len, int &out_n, char **&out_arr, int *&out_len, my_time_t *&out_delay);
int from_fec_to_normal(conn_info_t &conn_info, char *data, int len, int &out_n, char **&out_arr, int *&out_len, my_time_t *&out_delay);
int from_normal_to_fec(conn_info_t & conn_info,char *data,int len,int & out_n,char **&out_arr,int *&out_len,my_time_t *&out_delay); int delay_send(my_time_t delay, const dest_t &dest, char *data, int len);
int from_fec_to_normal(conn_info_t & conn_info,char *data,int len,int & out_n,char **&out_arr,int *&out_len,my_time_t *&out_delay);
int delay_send(my_time_t delay,const dest_t &dest,char *data,int len);
int print_parameter(); int print_parameter();
int handle_command(char *s); int handle_command(char *s);
int unit_test(); int unit_test();
//void print_help(); // void print_help();
void process_arg(int argc, char *argv[]); void process_arg(int argc, char *argv[]);

View File

@ -2,4 +2,3 @@
#include "my_ev_common.h" #include "my_ev_common.h"
#include "ev.h" #include "ev.h"

View File

@ -1,13 +1,15 @@
#define EV_STANDALONE 1 #define EV_STANDALONE 1
#define EV_COMMON void *data; unsigned long long u64; #define EV_COMMON \
void *data; \
unsigned long long u64;
#define EV_COMPAT3 0 #define EV_COMPAT3 0
//#define EV_VERIFY 2 //#define EV_VERIFY 2
#if defined(__MINGW32__) #if defined(__MINGW32__)
# define EV_FD_TO_WIN32_HANDLE(fd) (fd) #define EV_FD_TO_WIN32_HANDLE(fd) (fd)
# define EV_WIN32_HANDLE_TO_FD(handle) (handle) #define EV_WIN32_HANDLE_TO_FD(handle) (handle)
# define EV_WIN32_CLOSE_FD(fd) closesocket (fd) #define EV_WIN32_CLOSE_FD(fd) closesocket(fd)
# define FD_SETSIZE 4096 #define FD_SETSIZE 4096
#endif #endif

View File

@ -5,375 +5,333 @@
* Author: root * Author: root
*/ */
#include "common.h" #include "common.h"
#include "log.h" #include "log.h"
#include "packet.h" #include "packet.h"
#include "misc.h" #include "misc.h"
int iv_min=4; int iv_min = 4;
int iv_max=32;//< 256; int iv_max = 32; //< 256;
u64_t packet_send_count=0; u64_t packet_send_count = 0;
u64_t dup_packet_send_count=0; u64_t dup_packet_send_count = 0;
u64_t packet_recv_count=0; u64_t packet_recv_count = 0;
u64_t dup_packet_recv_count=0; u64_t dup_packet_recv_count = 0;
typedef u64_t anti_replay_seq_t; typedef u64_t anti_replay_seq_t;
int disable_replay_filter=0; int disable_replay_filter = 0;
int disable_obscure=0; int disable_obscure = 0;
int disable_xor=0; int disable_xor = 0;
int random_drop=0; int random_drop = 0;
char key_string[1000]= ""; char key_string[1000] = "";
//int local_listen_fd=-1; // int local_listen_fd=-1;
void encrypt_0(char *input, int &len, char *key) {
void encrypt_0(char * input,int &len,char *key) int i, j;
{ if (key[0] == 0) return;
int i,j; for (i = 0, j = 0; i < len; i++, j++) {
if(key[0]==0) return; if (key[j] == 0) j = 0;
for(i=0,j=0;i<len;i++,j++) input[i] ^= key[j];
{ }
if(key[j]==0)j=0;
input[i]^=key[j];
}
} }
void decrypt_0(char * input,int &len,char *key) void decrypt_0(char *input, int &len, char *key) {
{ int i, j;
int i,j; if (key[0] == 0) return;
if(key[0]==0) return; for (i = 0, j = 0; i < len; i++, j++) {
for(i=0,j=0;i<len;i++,j++) if (key[j] == 0) j = 0;
{ input[i] ^= key[j];
if(key[j]==0)j=0; }
input[i]^=key[j];
}
} }
int do_obscure_old(const char * input, int in_len,char *output,int &out_len) int do_obscure_old(const char *input, int in_len, char *output, int &out_len) {
{ // memcpy(output,input,in_len);
//memcpy(output,input,in_len); // out_len=in_len;
// out_len=in_len; // return 0;
//return 0;
int i, j, k; int i, j, k;
if (in_len > 65535||in_len<0) if (in_len > 65535 || in_len < 0)
return -1; return -1;
int iv_len=iv_min+rand()%(iv_max-iv_min); int iv_len = iv_min + rand() % (iv_max - iv_min);
get_fake_random_chars(output,iv_len); get_fake_random_chars(output, iv_len);
memcpy(output+iv_len,input,in_len); memcpy(output + iv_len, input, in_len);
output[iv_len+in_len]=(uint8_t)iv_len; output[iv_len + in_len] = (uint8_t)iv_len;
output[iv_len+in_len]^=output[0]; output[iv_len + in_len] ^= output[0];
output[iv_len+in_len]^=key_string[0]; output[iv_len + in_len] ^= key_string[0];
for(i=0,j=0,k=1;i<in_len;i++,j++,k++) for (i = 0, j = 0, k = 1; i < in_len; i++, j++, k++) {
{ if (j == iv_len) j = 0;
if(j==iv_len) j=0; if (key_string[k] == 0) k = 0;
if(key_string[k]==0)k=0; output[iv_len + i] ^= output[j];
output[iv_len+i]^=output[j]; output[iv_len + i] ^= key_string[k];
output[iv_len+i]^=key_string[k]; }
}
out_len = iv_len + in_len + 1;
out_len=iv_len+in_len+1; return 0;
return 0;
} }
int do_obscure(char * data,int &len) int do_obscure(char *data, int &len) {
{ assert(len >= 0);
assert(len>=0); assert(len < buf_len);
assert(len<buf_len);
int iv_len=random_between(iv_min,iv_max); int iv_len = random_between(iv_min, iv_max);
get_fake_random_chars(data+len,iv_len); get_fake_random_chars(data + len, iv_len);
data[iv_len+len]=(uint8_t)iv_len; data[iv_len + len] = (uint8_t)iv_len;
for(int i=0,j=0;i<len;i++,j++) for (int i = 0, j = 0; i < len; i++, j++) {
{ if (j == iv_len) j = 0;
if(j==iv_len)j=0; data[i] ^= data[len + j];
data[i]^=data[len+j]; }
}
len=len+iv_len+1; len = len + iv_len + 1;
return 0; return 0;
} }
int de_obscure(char * data,int &len) int de_obscure(char *data, int &len) {
{ if (len < 1) return -1;
if(len<1) return -1; int iv_len = int((uint8_t)data[len - 1]);
int iv_len=int ((uint8_t) data[len-1]);
if(len<1+iv_len) return -1; if (len < 1 + iv_len) return -1;
len=len-1-iv_len; len = len - 1 - iv_len;
for(int i=0,j=0;i<len;i++,j++) for (int i = 0, j = 0; i < len; i++, j++) {
{ if (j == iv_len) j = 0;
if(j==iv_len)j=0; data[i] ^= data[len + j];
data[i]^=data[len+j]; }
}
return 0; return 0;
} }
int de_obscure_old(const char * input, int in_len,char *output,int &out_len) int de_obscure_old(const char *input, int in_len, char *output, int &out_len) {
{ // memcpy(output,input,in_len);
//memcpy(output,input,in_len); // out_len=in_len;
//out_len=in_len; // return 0;
//return 0;
int i, j, k; int i, j, k;
if (in_len > 65535||in_len<0) if (in_len > 65535 || in_len < 0) {
{ mylog(log_debug, "in_len > 65535||in_len<0 , %d", in_len);
mylog(log_debug,"in_len > 65535||in_len<0 , %d",in_len); return -1;
return -1; }
} int iv_len = int((uint8_t)(input[in_len - 1] ^ input[0] ^ key_string[0]));
int iv_len= int ((uint8_t)(input[in_len-1]^input[0]^key_string[0]) ); out_len = in_len - 1 - iv_len;
out_len=in_len-1-iv_len; if (out_len < 0) {
if(out_len<0) mylog(log_debug, "%d %d\n", in_len, out_len);
{ return -1;
mylog(log_debug,"%d %d\n",in_len,out_len); }
return -1; for (i = 0, j = 0, k = 1; i < in_len; i++, j++, k++) {
} if (j == iv_len) j = 0;
for(i=0,j=0,k=1;i<in_len;i++,j++,k++) if (key_string[k] == 0) k = 0;
{ output[i] = input[iv_len + i] ^ input[j] ^ key_string[k];
if(j==iv_len) j=0; }
if(key_string[k]==0)k=0; dup_packet_recv_count++;
output[i]=input[iv_len+i]^input[j]^key_string[k]; return 0;
}
dup_packet_recv_count++;
return 0;
} }
/* /*
int sendto_fd_ip_port (int fd,u32_t ip,int port,char * buf, int len,int flags) int sendto_fd_ip_port (int fd,u32_t ip,int port,char * buf, int len,int flags)
{ {
sockaddr_in tmp_sockaddr; sockaddr_in tmp_sockaddr;
memset(&tmp_sockaddr,0,sizeof(tmp_sockaddr)); memset(&tmp_sockaddr,0,sizeof(tmp_sockaddr));
tmp_sockaddr.sin_family = AF_INET; tmp_sockaddr.sin_family = AF_INET;
tmp_sockaddr.sin_addr.s_addr = ip; tmp_sockaddr.sin_addr.s_addr = ip;
tmp_sockaddr.sin_port = htons(uint16_t(port)); tmp_sockaddr.sin_port = htons(uint16_t(port));
return sendto(fd, buf, return sendto(fd, buf,
len , 0, len , 0,
(struct sockaddr *) &tmp_sockaddr, (struct sockaddr *) &tmp_sockaddr,
sizeof(tmp_sockaddr)); sizeof(tmp_sockaddr));
}*/ }*/
int sendto_fd_addr (int fd,address_t addr,char * buf, int len,int flags) int sendto_fd_addr(int fd, address_t addr, char *buf, int len, int flags) {
{ return sendto(fd, buf,
len, 0,
return sendto(fd, buf, (struct sockaddr *)&addr.inner,
len , 0, addr.get_len());
(struct sockaddr *) &addr.inner,
addr.get_len());
} }
/* /*
int sendto_ip_port (u32_t ip,int port,char * buf, int len,int flags) int sendto_ip_port (u32_t ip,int port,char * buf, int len,int flags)
{ {
return sendto_fd_ip_port(local_listen_fd,ip,port,buf,len,flags); return sendto_fd_ip_port(local_listen_fd,ip,port,buf,len,flags);
}*/ }*/
int send_fd (int fd,char * buf, int len,int flags) int send_fd(int fd, char *buf, int len, int flags) {
{ return send(fd, buf, len, flags);
return send(fd,buf,len,flags);
} }
int my_send(const dest_t &dest,char *data,int len) int my_send(const dest_t &dest, char *data, int len) {
{ if (dest.cook) {
if(dest.cook) do_cook(data, len);
{ }
do_cook(data,len); switch (dest.type) {
} case type_fd_addr: {
switch(dest.type) return sendto_fd_addr(dest.inner.fd, dest.inner.fd_addr.addr, data, len, 0);
{ break;
case type_fd_addr: }
{ case type_fd64_addr: {
return sendto_fd_addr(dest.inner.fd,dest.inner.fd_addr.addr,data,len,0); if (!fd_manager.exist(dest.inner.fd64)) return -1;
break; int fd = fd_manager.to_fd(dest.inner.fd64);
}
case type_fd64_addr:
{
if(!fd_manager.exist(dest.inner.fd64)) return -1;
int fd=fd_manager.to_fd(dest.inner.fd64);
return sendto_fd_addr(fd,dest.inner.fd64_addr.addr,data,len,0); return sendto_fd_addr(fd, dest.inner.fd64_addr.addr, data, len, 0);
break; break;
} }
case type_fd: case type_fd: {
{ return send_fd(dest.inner.fd, data, len, 0);
return send_fd(dest.inner.fd,data,len,0); break;
break; }
} case type_write_fd: {
case type_write_fd: return write(dest.inner.fd, data, len);
{ break;
return write(dest.inner.fd,data,len); }
break; case type_fd64: {
} if (!fd_manager.exist(dest.inner.fd64)) return -1;
case type_fd64: int fd = fd_manager.to_fd(dest.inner.fd64);
{
if(!fd_manager.exist(dest.inner.fd64)) return -1; return send_fd(fd, data, len, 0);
int fd=fd_manager.to_fd(dest.inner.fd64); break;
}
/*
case type_fd64_ip_port_conv:
{
if(!fd_manager.exist(dest.inner.fd64)) return -1;
int fd=fd_manager.to_fd(dest.inner.fd64);
return send_fd(fd,data,len,0); char *new_data;
break; int new_len;
}
/*
case type_fd64_ip_port_conv:
{
if(!fd_manager.exist(dest.inner.fd64)) return -1;
int fd=fd_manager.to_fd(dest.inner.fd64);
char *new_data; put_conv(dest.conv,data,len,new_data,new_len);
int new_len; return sendto_fd_ip_port(fd,dest.inner.fd64_ip_port.ip_port.ip,dest.inner.fd64_ip_port.ip_port.port,new_data,new_len,0);
break;
}*/
put_conv(dest.conv,data,len,new_data,new_len); /*
return sendto_fd_ip_port(fd,dest.inner.fd64_ip_port.ip_port.ip,dest.inner.fd64_ip_port.ip_port.port,new_data,new_len,0); case type_fd64_conv:
break; {
}*/ char *new_data;
int new_len;
put_conv(dest.conv,data,len,new_data,new_len);
/* if(!fd_manager.exist(dest.inner.fd64)) return -1;
case type_fd64_conv: int fd=fd_manager.to_fd(dest.inner.fd64);
{ return send_fd(fd,new_data,new_len,0);
char *new_data; }*/
int new_len; /*
put_conv(dest.conv,data,len,new_data,new_len); case type_fd:
{
if(!fd_manager.exist(dest.inner.fd64)) return -1; send_fd(dest.inner.fd,data,len,0);
int fd=fd_manager.to_fd(dest.inner.fd64); break;
return send_fd(fd,new_data,new_len,0); }*/
}*/ default:
/* assert(0 == 1);
case type_fd: }
{ return 0;
send_fd(dest.inner.fd,data,len,0);
break;
}*/
default:
assert(0==1);
}
return 0;
} }
/* /*
* this function comes from http://www.hackersdelight.org/hdcodetxt/crc.c.txt * this function comes from http://www.hackersdelight.org/hdcodetxt/crc.c.txt
*/ */
unsigned int crc32h(unsigned char *message,int len) { unsigned int crc32h(unsigned char *message, int len) {
assert(len>=0); assert(len >= 0);
int i, crc; int i, crc;
unsigned int byte, c; unsigned int byte, c;
const unsigned int g0 = 0xEDB88320, g1 = g0>>1, const unsigned int g0 = 0xEDB88320, g1 = g0 >> 1,
g2 = g0>>2, g3 = g0>>3, g4 = g0>>4, g5 = g0>>5, g2 = g0 >> 2, g3 = g0 >> 3, g4 = g0 >> 4, g5 = g0 >> 5,
g6 = (g0>>6)^g0, g7 = ((g0>>6)^g0)>>1; g6 = (g0 >> 6) ^ g0, g7 = ((g0 >> 6) ^ g0) >> 1;
i = 0; i = 0;
crc = 0xFFFFFFFF; crc = 0xFFFFFFFF;
while (i!=len) { // Get next byte. while (i != len) { // Get next byte.
byte = message[i]; byte = message[i];
crc = crc ^ byte; crc = crc ^ byte;
c = ((crc<<31>>31) & g7) ^ ((crc<<30>>31) & g6) ^ c = ((crc << 31 >> 31) & g7) ^ ((crc << 30 >> 31) & g6) ^
((crc<<29>>31) & g5) ^ ((crc<<28>>31) & g4) ^ ((crc << 29 >> 31) & g5) ^ ((crc << 28 >> 31) & g4) ^
((crc<<27>>31) & g3) ^ ((crc<<26>>31) & g2) ^ ((crc << 27 >> 31) & g3) ^ ((crc << 26 >> 31) & g2) ^
((crc<<25>>31) & g1) ^ ((crc<<24>>31) & g0); ((crc << 25 >> 31) & g1) ^ ((crc << 24 >> 31) & g0);
crc = ((unsigned)crc >> 8) ^ c; crc = ((unsigned)crc >> 8) ^ c;
i = i + 1; i = i + 1;
} }
return ~crc; return ~crc;
} }
int put_conv0(u32_t conv,const char * input,int len_in,char *&output,int &len_out) int put_conv0(u32_t conv, const char *input, int len_in, char *&output, int &len_out) {
{ assert(len_in >= 0);
assert(len_in>=0); static char buf[buf_len];
static char buf[buf_len]; output = buf;
output=buf; u32_t n_conv = htonl(conv);
u32_t n_conv=htonl(conv); memcpy(output, &n_conv, sizeof(n_conv));
memcpy(output,&n_conv,sizeof(n_conv)); memcpy(output + sizeof(n_conv), input, len_in);
memcpy(output+sizeof(n_conv),input,len_in); u32_t crc32 = crc32h((unsigned char *)output, len_in + sizeof(crc32));
u32_t crc32=crc32h((unsigned char *)output,len_in+sizeof(crc32)); u32_t crc32_n = htonl(crc32);
u32_t crc32_n=htonl(crc32); len_out = len_in + (int)(sizeof(n_conv)) + (int)sizeof(crc32_n);
len_out=len_in+(int)(sizeof(n_conv))+(int)sizeof(crc32_n); memcpy(output + len_in + (int)(sizeof(n_conv)), &crc32_n, sizeof(crc32_n));
memcpy(output+len_in+(int)(sizeof(n_conv)),&crc32_n,sizeof(crc32_n)); return 0;
return 0;
} }
int get_conv0(u32_t &conv,const char *input,int len_in,char *&output,int &len_out ) int get_conv0(u32_t &conv, const char *input, int len_in, char *&output, int &len_out) {
{ assert(len_in >= 0);
assert(len_in>=0); u32_t n_conv;
u32_t n_conv; memcpy(&n_conv, input, sizeof(n_conv));
memcpy(&n_conv,input,sizeof(n_conv)); conv = ntohl(n_conv);
conv=ntohl(n_conv); output = (char *)input + sizeof(n_conv);
output=(char *)input+sizeof(n_conv); u32_t crc32_n;
u32_t crc32_n; len_out = len_in - (int)sizeof(n_conv) - (int)sizeof(crc32_n);
len_out=len_in-(int)sizeof(n_conv)-(int)sizeof(crc32_n); if (len_out < 0) {
if(len_out<0) mylog(log_debug, "len_out<0\n");
{ return -1;
mylog(log_debug,"len_out<0\n"); }
return -1; memcpy(&crc32_n, input + len_in - (int)sizeof(crc32_n), sizeof(crc32_n));
} u32_t crc32 = ntohl(crc32_n);
memcpy(&crc32_n,input+len_in-(int)sizeof(crc32_n),sizeof(crc32_n)); if (crc32 != crc32h((unsigned char *)input, len_in - (int)sizeof(crc32_n))) {
u32_t crc32=ntohl(crc32_n); mylog(log_debug, "crc32 check failed\n");
if(crc32!=crc32h((unsigned char *)input,len_in-(int)sizeof(crc32_n))) return -1;
{ }
mylog(log_debug,"crc32 check failed\n"); return 0;
return -1;
}
return 0;
} }
int put_crc32(char * s,int &len) int put_crc32(char *s, int &len) {
{ if (disable_checksum) return 0;
if(disable_checksum)return 0; assert(len >= 0);
assert(len>=0); // if(len<0) return -1;
//if(len<0) return -1; u32_t crc32 = crc32h((unsigned char *)s, len);
u32_t crc32=crc32h((unsigned char *)s,len); write_u32(s + len, crc32);
write_u32(s+len,crc32); len += sizeof(u32_t);
len+=sizeof(u32_t);
return 0;
return 0;
} }
int do_cook(char * data,int &len) int do_cook(char *data, int &len) {
{ put_crc32(data, len);
put_crc32(data,len); if (!disable_obscure) do_obscure(data, len);
if(!disable_obscure)do_obscure(data,len); if (!disable_xor) encrypt_0(data, len, key_string);
if(!disable_xor)encrypt_0(data,len,key_string); return 0;
return 0;
} }
int de_cook(char * s,int &len) int de_cook(char *s, int &len) {
{ if (!disable_xor) decrypt_0(s, len, key_string);
if(!disable_xor)decrypt_0(s,len,key_string); if (!disable_obscure) {
if(!disable_obscure) int ret = de_obscure(s, len);
{ if (ret != 0) {
int ret=de_obscure(s,len); mylog(log_debug, "de_obscure fail\n");
if(ret!=0) return ret;
{ }
mylog(log_debug,"de_obscure fail\n"); }
return ret; int ret = rm_crc32(s, len);
} if (ret != 0) {
} mylog(log_debug, "rm_crc32 fail\n");
int ret=rm_crc32(s,len); return ret;
if(ret!=0) }
{ return 0;
mylog(log_debug,"rm_crc32 fail\n");
return ret;
}
return 0;
} }
int rm_crc32(char * s,int &len) int rm_crc32(char *s, int &len) {
{ if (disable_checksum) return 0;
if(disable_checksum)return 0; assert(len >= 0);
assert(len>=0); len -= sizeof(u32_t);
len-=sizeof(u32_t); if (len < 0) return -1;
if(len<0) return -1; u32_t crc32_in = read_u32(s + len);
u32_t crc32_in=read_u32(s+len); u32_t crc32 = crc32h((unsigned char *)s, len);
u32_t crc32=crc32h((unsigned char *)s,len); if (crc32 != crc32_in) return -1;
if(crc32!=crc32_in) return -1; return 0;
return 0;
} }
/* /*
int do_obs() int do_obs()
@ -381,31 +339,25 @@ int do_obs()
} }
int de_obs()*/ int de_obs()*/
int put_conv(u32_t conv,const char * input,int len_in,char *&output,int &len_out) int put_conv(u32_t conv, const char *input, int len_in, char *&output, int &len_out) {
{ static char buf[buf_len];
static char buf[buf_len]; output = buf;
output=buf; u32_t n_conv = htonl(conv);
u32_t n_conv=htonl(conv); memcpy(output, &n_conv, sizeof(n_conv));
memcpy(output,&n_conv,sizeof(n_conv)); memcpy(output + sizeof(n_conv), input, len_in);
memcpy(output+sizeof(n_conv),input,len_in); len_out = len_in + (int)(sizeof(n_conv));
len_out=len_in+(int)(sizeof(n_conv));
return 0; return 0;
} }
int get_conv(u32_t &conv,const char *input,int len_in,char *&output,int &len_out ) int get_conv(u32_t &conv, const char *input, int len_in, char *&output, int &len_out) {
{ u32_t n_conv;
u32_t n_conv; memcpy(&n_conv, input, sizeof(n_conv));
memcpy(&n_conv,input,sizeof(n_conv)); conv = ntohl(n_conv);
conv=ntohl(n_conv); output = (char *)input + sizeof(n_conv);
output=(char *)input+sizeof(n_conv); len_out = len_in - (int)sizeof(n_conv);
len_out=len_in-(int)sizeof(n_conv); if (len_out < 0) {
if(len_out<0) mylog(log_debug, "len_out<0\n");
{ return -1;
mylog(log_debug,"len_out<0\n"); }
return -1; return 0;
}
return 0;
} }

View File

@ -12,7 +12,7 @@
#include "fd_manager.h" #include "fd_manager.h"
extern int iv_min; extern int iv_min;
extern int iv_max;//< 256; extern int iv_max; //< 256;
extern u64_t packet_send_count; extern u64_t packet_send_count;
extern u64_t dup_packet_send_count; extern u64_t dup_packet_send_count;
@ -24,24 +24,23 @@ extern int random_drop;
extern int disable_obscure; extern int disable_obscure;
extern int disable_xor; extern int disable_xor;
int my_send(const dest_t &dest, char *data, int len);
int my_send(const dest_t &dest,char *data,int len); void encrypt_0(char *input, int &len, char *key);
void decrypt_0(char *input, int &len, char *key);
int add_seq(char *data, int &data_len);
int remove_seq(char *data, int &data_len);
int do_obscure(const char *input, int in_len, char *output, int &out_len);
int de_obscure(const char *input, int in_len, char *output, int &out_len);
void encrypt_0(char * input,int &len,char *key); // int sendto_fd_u64 (int fd,u64_t u64,char * buf, int len,int flags);
void decrypt_0(char * input,int &len,char *key); int sendto_ip_port(u32_t ip, int port, char *buf, int len, int flags);
int add_seq(char * data,int &data_len ); int send_fd(int fd, char *buf, int len, int flags);
int remove_seq(char * data,int &data_len);
int do_obscure(const char * input, int in_len,char *output,int &out_len);
int de_obscure(const char * input, int in_len,char *output,int &out_len);
//int sendto_fd_u64 (int fd,u64_t u64,char * buf, int len,int flags); int put_conv(u32_t conv, const char *input, int len_in, char *&output, int &len_out);
int sendto_ip_port (u32_t ip,int port,char * buf, int len,int flags); int get_conv(u32_t &conv, const char *input, int len_in, char *&output, int &len_out);
int send_fd (int fd,char * buf, int len,int flags); int put_crc32(char *s, int &len);
int rm_crc32(char *s, int &len);
int put_conv(u32_t conv,const char * input,int len_in,char *&output,int &len_out); int do_cook(char *data, int &len);
int get_conv(u32_t &conv,const char *input,int len_in,char *&output,int &len_out ); int de_cook(char *s, int &len);
int put_crc32(char * s,int &len);
int rm_crc32(char * s,int &len);
int do_cook(char * data,int &len);
int de_cook(char * s,int &len);
#endif /* PACKET_H_ */ #endif /* PACKET_H_ */

View File

@ -8,7 +8,6 @@
#ifndef TUNNEL_H_ #ifndef TUNNEL_H_
#define TUNNEL_H_ #define TUNNEL_H_
#include "misc.h" #include "misc.h"
int tunnel_client_event_loop(); int tunnel_client_event_loop();

View File

@ -1,453 +1,422 @@
#include "tunnel.h" #include "tunnel.h"
void data_from_local_or_fec_timeout(conn_info_t & conn_info,int is_time_out) void data_from_local_or_fec_timeout(conn_info_t &conn_info, int is_time_out) {
{ fd64_t &remote_fd64 = conn_info.remote_fd64;
fd64_t &remote_fd64=conn_info.remote_fd64; int &local_listen_fd = conn_info.local_listen_fd;
int & local_listen_fd=conn_info.local_listen_fd;
char data[buf_len]; char data[buf_len];
int data_len; int data_len;
address_t addr; address_t addr;
u32_t conv; u32_t conv;
int out_n;char **out_arr;int *out_len;my_time_t *out_delay; int out_n;
dest_t dest; char **out_arr;
dest.type=type_fd64; int *out_len;
dest.inner.fd64=remote_fd64; my_time_t *out_delay;
dest.cook=1; dest_t dest;
dest.type = type_fd64;
dest.inner.fd64 = remote_fd64;
dest.cook = 1;
if(is_time_out) if (is_time_out) {
{ // fd64_t fd64=events[idx].data.u64;
//fd64_t fd64=events[idx].data.u64; mylog(log_trace, "events[idx].data.u64 == conn_info.fec_encode_manager.get_timer_fd64()\n");
mylog(log_trace,"events[idx].data.u64 == conn_info.fec_encode_manager.get_timer_fd64()\n");
//uint64_t value; // uint64_t value;
//if(!fd_manager.exist(fd64)) //fd64 has been closed // if(!fd_manager.exist(fd64)) //fd64 has been closed
//{ //{
// mylog(log_trace,"!fd_manager.exist(fd64)"); // mylog(log_trace,"!fd_manager.exist(fd64)");
// continue; // continue;
//} // }
//if((ret=read(fd_manager.to_fd(fd64), &value, 8))!=8) // if((ret=read(fd_manager.to_fd(fd64), &value, 8))!=8)
//{ //{
// mylog(log_trace,"(ret=read(fd_manager.to_fd(fd64), &value, 8))!=8,ret=%d\n",ret); // mylog(log_trace,"(ret=read(fd_manager.to_fd(fd64), &value, 8))!=8,ret=%d\n",ret);
// continue; // continue;
//} // }
//if(value==0) // if(value==0)
//{ //{
// mylog(log_debug,"value==0\n"); // mylog(log_debug,"value==0\n");
// continue; // continue;
//} // }
//assert(value==1); // assert(value==1);
from_normal_to_fec(conn_info,0,0,out_n,out_arr,out_len,out_delay); from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay);
} } else // events[idx].data.u64 == (u64_t)local_listen_fd
else//events[idx].data.u64 == (u64_t)local_listen_fd {
{ mylog(log_trace, "events[idx].data.u64 == (u64_t)local_listen_fd\n");
mylog(log_trace,"events[idx].data.u64 == (u64_t)local_listen_fd\n"); address_t::storage_t udp_new_addr_in = {0};
address_t::storage_t udp_new_addr_in={0}; socklen_t udp_new_addr_len = sizeof(address_t::storage_t);
socklen_t udp_new_addr_len = sizeof(address_t::storage_t); if ((data_len = recvfrom(local_listen_fd, data, max_data_len + 1, 0,
if ((data_len = recvfrom(local_listen_fd, data, max_data_len+1, 0, (struct sockaddr *)&udp_new_addr_in, &udp_new_addr_len)) == -1) {
(struct sockaddr *) &udp_new_addr_in, &udp_new_addr_len)) == -1) { mylog(log_debug, "recv_from error,this shouldnt happen,err=%s,but we can try to continue\n", get_sock_error());
mylog(log_debug,"recv_from error,this shouldnt happen,err=%s,but we can try to continue\n",get_sock_error()); return;
return; };
};
if(data_len==max_data_len+1) if (data_len == max_data_len + 1) {
{ mylog(log_warn, "huge packet from upper level, data_len > %d, packet truncated, dropped\n", max_data_len);
mylog(log_warn,"huge packet from upper level, data_len > %d, packet truncated, dropped\n",max_data_len); return;
return ;
}
if(!disable_mtu_warn&&data_len>=mtu_warn)
{
mylog(log_warn,"huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ",data_len,mtu_warn);
}
addr.from_sockaddr((struct sockaddr *) &udp_new_addr_in,udp_new_addr_len);
mylog(log_trace,"Received packet from %s, len: %d\n", addr.get_str(),data_len);
//u64_t u64=ip_port.to_u64();
if(!conn_info.conv_manager.c.is_data_used(addr))
{
if(conn_info.conv_manager.c.get_size() >=max_conv_num)
{
mylog(log_warn,"ignored new udp connect bc max_conv_num exceed\n");
return;
}
conv=conn_info.conv_manager.c.get_new_conv();
conn_info.conv_manager.c.insert_conv(conv,addr);
mylog(log_info,"new packet from %s,conv_id=%x\n",addr.get_str(),conv);
}
else
{
conv=conn_info.conv_manager.c.find_conv_by_data(addr);
mylog(log_trace,"conv=%d\n",conv);
}
conn_info.conv_manager.c.update_active_time(conv);
char * new_data;
int new_len;
put_conv(conv,data,data_len,new_data,new_len);
mylog(log_trace,"data_len=%d new_len=%d\n",data_len,new_len);
from_normal_to_fec(conn_info,new_data,new_len,out_n,out_arr,out_len,out_delay);
}
mylog(log_trace,"out_n=%d\n",out_n);
for(int i=0;i<out_n;i++)
{
delay_send(out_delay[i],dest,out_arr[i],out_len[i]);
}
}
static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int revents)
{
assert(!(revents&EV_ERROR));
conn_info_t & conn_info= *((conn_info_t*)watcher->data);
data_from_local_or_fec_timeout(conn_info,0);
}
static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents)
{
assert(!(revents&EV_ERROR));
conn_info_t & conn_info= *((conn_info_t*)watcher->data);
char data[buf_len];
if(!fd_manager.exist(watcher->u64)) //fd64 has been closed
{
mylog(log_trace,"!fd_manager.exist(events[idx].data.u64)");
return;
}
fd64_t &remote_fd64=conn_info.remote_fd64;
int &remote_fd=conn_info.remote_fd;
assert(watcher->u64==remote_fd64);
int fd=fd_manager.to_fd(remote_fd64);
int data_len =recv(fd,data,max_data_len+1,0);
if(data_len==max_data_len+1)
{
mylog(log_warn,"huge packet, data_len > %d, packet truncated, dropped\n",max_data_len);
return ;
} }
if (!disable_mtu_warn && data_len >= mtu_warn) {
mylog(log_warn, "huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn);
}
mylog(log_trace, "received data from udp fd %d, len=%d\n", remote_fd,data_len); addr.from_sockaddr((struct sockaddr *)&udp_new_addr_in, udp_new_addr_len);
if(data_len<0)
{
if(get_sock_errno()==ECONNREFUSED)
{
mylog(log_debug, "recv failed %d ,udp_fd%d,errno:%s\n", data_len,remote_fd,get_sock_error());
}
mylog(log_warn, "recv failed %d ,udp_fd%d,errno:%s\n", data_len,remote_fd,get_sock_error()); mylog(log_trace, "Received packet from %s, len: %d\n", addr.get_str(), data_len);
return;
}
if(!disable_mtu_warn&&data_len>mtu_warn)
{
mylog(log_warn,"huge packet,data len=%d (>%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ",data_len,mtu_warn);
}
if(de_cook(data,data_len)!=0) // u64_t u64=ip_port.to_u64();
{
mylog(log_debug,"de_cook error");
return;
}
int out_n;char **out_arr;int *out_len;my_time_t *out_delay; if (!conn_info.conv_manager.c.is_data_used(addr)) {
from_fec_to_normal(conn_info,data,data_len,out_n,out_arr,out_len,out_delay); if (conn_info.conv_manager.c.get_size() >= max_conv_num) {
mylog(log_warn, "ignored new udp connect bc max_conv_num exceed\n");
return;
}
conv = conn_info.conv_manager.c.get_new_conv();
conn_info.conv_manager.c.insert_conv(conv, addr);
mylog(log_info, "new packet from %s,conv_id=%x\n", addr.get_str(), conv);
} else {
conv = conn_info.conv_manager.c.find_conv_by_data(addr);
mylog(log_trace, "conv=%d\n", conv);
}
conn_info.conv_manager.c.update_active_time(conv);
char *new_data;
int new_len;
put_conv(conv, data, data_len, new_data, new_len);
mylog(log_trace,"out_n=%d\n",out_n); mylog(log_trace, "data_len=%d new_len=%d\n", data_len, new_len);
from_normal_to_fec(conn_info, new_data, new_len, out_n, out_arr, out_len, out_delay);
}
mylog(log_trace, "out_n=%d\n", out_n);
for (int i = 0; i < out_n; i++) {
delay_send(out_delay[i], dest, out_arr[i], out_len[i]);
}
}
static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
assert(!(revents & EV_ERROR));
for(int i=0;i<out_n;i++) conn_info_t &conn_info = *((conn_info_t *)watcher->data);
{
u32_t conv;
char *new_data;
int new_len;
if(get_conv(conv,out_arr[i],out_len[i],new_data,new_len)!=0)
{
mylog(log_debug,"get_conv(conv,out_arr[i],out_len[i],new_data,new_len)!=0");
continue;
}
if(!conn_info.conv_manager.c.is_conv_used(conv))
{
mylog(log_trace,"!conn_info.conv_manager.is_conv_used(conv)");
continue;
}
conn_info.conv_manager.c.update_active_time(conv); data_from_local_or_fec_timeout(conn_info, 0);
address_t addr=conn_info.conv_manager.c.find_data_by_conv(conv);
dest_t dest;
dest.inner.fd_addr.fd=conn_info.local_listen_fd;
dest.inner.fd_addr.addr=addr;
dest.type=type_fd_addr;
delay_send(out_delay[i],dest,new_data,new_len);
}
} }
static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
int fifo_fd=watcher->fd;
char buf[buf_len]; conn_info_t &conn_info = *((conn_info_t *)watcher->data);
int len=read (fifo_fd, buf, sizeof (buf));
if(len<0) char data[buf_len];
{ if (!fd_manager.exist(watcher->u64)) // fd64 has been closed
mylog(log_warn,"fifo read failed len=%d,errno=%s\n",len,get_sock_error()); {
return; mylog(log_trace, "!fd_manager.exist(events[idx].data.u64)");
} return;
buf[len]=0; }
handle_command(buf); fd64_t &remote_fd64 = conn_info.remote_fd64;
int &remote_fd = conn_info.remote_fd;
assert(watcher->u64 == remote_fd64);
int fd = fd_manager.to_fd(remote_fd64);
int data_len = recv(fd, data, max_data_len + 1, 0);
if (data_len == max_data_len + 1) {
mylog(log_warn, "huge packet, data_len > %d, packet truncated, dropped\n", max_data_len);
return;
}
mylog(log_trace, "received data from udp fd %d, len=%d\n", remote_fd, data_len);
if (data_len < 0) {
if (get_sock_errno() == ECONNREFUSED) {
mylog(log_debug, "recv failed %d ,udp_fd%d,errno:%s\n", data_len, remote_fd, get_sock_error());
}
mylog(log_warn, "recv failed %d ,udp_fd%d,errno:%s\n", data_len, remote_fd, get_sock_error());
return;
}
if (!disable_mtu_warn && data_len > mtu_warn) {
mylog(log_warn, "huge packet,data len=%d (>%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn);
}
if (de_cook(data, data_len) != 0) {
mylog(log_debug, "de_cook error");
return;
}
int out_n;
char **out_arr;
int *out_len;
my_time_t *out_delay;
from_fec_to_normal(conn_info, data, data_len, out_n, out_arr, out_len, out_delay);
mylog(log_trace, "out_n=%d\n", out_n);
for (int i = 0; i < out_n; i++) {
u32_t conv;
char *new_data;
int new_len;
if (get_conv(conv, out_arr[i], out_len[i], new_data, new_len) != 0) {
mylog(log_debug, "get_conv(conv,out_arr[i],out_len[i],new_data,new_len)!=0");
continue;
}
if (!conn_info.conv_manager.c.is_conv_used(conv)) {
mylog(log_trace, "!conn_info.conv_manager.is_conv_used(conv)");
continue;
}
conn_info.conv_manager.c.update_active_time(conv);
address_t addr = conn_info.conv_manager.c.find_data_by_conv(conv);
dest_t dest;
dest.inner.fd_addr.fd = conn_info.local_listen_fd;
dest.inner.fd_addr.addr = addr;
dest.type = type_fd_addr;
delay_send(out_delay[i], dest, new_data, new_len);
}
} }
static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR)); int fifo_fd = watcher->fd;
//uint64_t value; char buf[buf_len];
//read(delay_manager.get_timer_fd(), &value, 8); int len = read(fifo_fd, buf, sizeof(buf));
//mylog(log_trace,"events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()\n"); if (len < 0) {
mylog(log_warn, "fifo read failed len=%d,errno=%s\n", len, get_sock_error());
//do nothing return;
}
buf[len] = 0;
handle_command(buf);
} }
static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
conn_info_t & conn_info= *((conn_info_t*)watcher->data); // uint64_t value;
// read(delay_manager.get_timer_fd(), &value, 8);
data_from_local_or_fec_timeout(conn_info,1); // mylog(log_trace,"events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()\n");
// do nothing
} }
static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
uint64_t value; conn_info_t &conn_info = *((conn_info_t *)watcher->data);
conn_info_t & conn_info= *((conn_info_t*)watcher->data); data_from_local_or_fec_timeout(conn_info, 1);
//read(conn_info.timer.get_timer_fd(), &value, 8);
conn_info.conv_manager.c.clear_inactive();
mylog(log_trace,"events[idx].data.u64==(u64_t)conn_info.timer.get_timer_fd()\n");
conn_info.stat.report_as_client();
if(debug_force_flush_fec)
{
int out_n;char **out_arr;int *out_len;my_time_t *out_delay;
dest_t dest;
dest.type=type_fd64;
dest.inner.fd64=conn_info.remote_fd64;
dest.cook=1;
from_normal_to_fec(conn_info,0,0,out_n,out_arr,out_len,out_delay);
for(int i=0;i<out_n;i++)
{
delay_send(out_delay[i],dest,out_arr[i],out_len[i]);
}
}
} }
static void prepare_cb(struct ev_loop *loop, struct ev_prepare *watcher, int revents) static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
delay_manager.check(); uint64_t value;
conn_info_t &conn_info = *((conn_info_t *)watcher->data);
// read(conn_info.timer.get_timer_fd(), &value, 8);
conn_info.conv_manager.c.clear_inactive();
mylog(log_trace, "events[idx].data.u64==(u64_t)conn_info.timer.get_timer_fd()\n");
conn_info.stat.report_as_client();
if (debug_force_flush_fec) {
int out_n;
char **out_arr;
int *out_len;
my_time_t *out_delay;
dest_t dest;
dest.type = type_fd64;
dest.inner.fd64 = conn_info.remote_fd64;
dest.cook = 1;
from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay);
for (int i = 0; i < out_n; i++) {
delay_send(out_delay[i], dest, out_arr[i], out_len[i]);
}
}
} }
int tunnel_client_event_loop() static void prepare_cb(struct ev_loop *loop, struct ev_prepare *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
int i, j, k;int ret;
int yes = 1;
//int epoll_fd;
delay_manager.check();
}
conn_info_t *conn_info_p=new conn_info_t; int tunnel_client_event_loop() {
conn_info_t &conn_info=*conn_info_p; //huge size of conn_info,do not allocate on stack int i, j, k;
int ret;
int yes = 1;
// int epoll_fd;
int &local_listen_fd=conn_info.local_listen_fd; conn_info_t *conn_info_p = new conn_info_t;
new_listen_socket2(local_listen_fd,local_addr); conn_info_t &conn_info = *conn_info_p; // huge size of conn_info,do not allocate on stack
//epoll_fd = epoll_create1(0); int &local_listen_fd = conn_info.local_listen_fd;
//assert(epoll_fd>0); new_listen_socket2(local_listen_fd, local_addr);
//const int max_events = 4096; // epoll_fd = epoll_create1(0);
//struct epoll_event ev, events[max_events]; // assert(epoll_fd>0);
//if (epoll_fd < 0) {
// mylog(log_fatal,"epoll return %d\n", epoll_fd);
// myexit(-1);
//}
struct ev_loop * loop= ev_default_loop(0); // const int max_events = 4096;
assert(loop != NULL); // struct epoll_event ev, events[max_events];
// if (epoll_fd < 0) {
// mylog(log_fatal,"epoll return %d\n", epoll_fd);
// myexit(-1);
// }
conn_info.loop=loop; struct ev_loop *loop = ev_default_loop(0);
assert(loop != NULL);
//ev.events = EPOLLIN; conn_info.loop = loop;
//ev.data.u64 = local_listen_fd;
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, local_listen_fd, &ev); // ev.events = EPOLLIN;
//if (ret!=0) { // ev.data.u64 = local_listen_fd;
// mylog(log_fatal,"add udp_listen_fd error\n"); // ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, local_listen_fd, &ev);
// myexit(-1); // if (ret!=0) {
//} // mylog(log_fatal,"add udp_listen_fd error\n");
struct ev_io local_listen_watcher; // myexit(-1);
local_listen_watcher.data=&conn_info; // }
struct ev_io local_listen_watcher;
local_listen_watcher.data = &conn_info;
ev_io_init(&local_listen_watcher, local_listen_cb, local_listen_fd, EV_READ); ev_io_init(&local_listen_watcher, local_listen_cb, local_listen_fd, EV_READ);
ev_io_start(loop, &local_listen_watcher); ev_io_start(loop, &local_listen_watcher);
int & remote_fd=conn_info.remote_fd; int &remote_fd = conn_info.remote_fd;
fd64_t &remote_fd64=conn_info.remote_fd64; fd64_t &remote_fd64 = conn_info.remote_fd64;
assert(new_connected_socket2(remote_fd,remote_addr,out_addr,out_interface)==0); assert(new_connected_socket2(remote_fd, remote_addr, out_addr, out_interface) == 0);
remote_fd64=fd_manager.create(remote_fd); remote_fd64 = fd_manager.create(remote_fd);
mylog(log_debug,"remote_fd64=%llu\n",remote_fd64); mylog(log_debug, "remote_fd64=%llu\n", remote_fd64);
//ev.events = EPOLLIN; // ev.events = EPOLLIN;
//ev.data.u64 = remote_fd64; // ev.data.u64 = remote_fd64;
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, remote_fd, &ev); // ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, remote_fd, &ev);
//if (ret!= 0) { // if (ret!= 0) {
// mylog(log_fatal,"add raw_fd error\n"); // mylog(log_fatal,"add raw_fd error\n");
// myexit(-1); // myexit(-1);
//} // }
struct ev_io remote_watcher; struct ev_io remote_watcher;
remote_watcher.data=&conn_info; remote_watcher.data = &conn_info;
remote_watcher.u64=remote_fd64; remote_watcher.u64 = remote_fd64;
ev_io_init(&remote_watcher, remote_cb, remote_fd, EV_READ); ev_io_init(&remote_watcher, remote_cb, remote_fd, EV_READ);
ev_io_start(loop, &remote_watcher); ev_io_start(loop, &remote_watcher);
// ev.events = EPOLLIN;
// ev.data.u64 = delay_manager.get_timer_fd();
//ev.events = EPOLLIN; // mylog(log_debug,"delay_manager.get_timer_fd()=%d\n",delay_manager.get_timer_fd());
//ev.data.u64 = delay_manager.get_timer_fd(); // ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, delay_manager.get_timer_fd(), &ev);
// if (ret!= 0) {
// mylog(log_fatal,"add delay_manager.get_timer_fd() error\n");
// myexit(-1);
// }
//mylog(log_debug,"delay_manager.get_timer_fd()=%d\n",delay_manager.get_timer_fd()); delay_manager.set_loop_and_cb(loop, delay_manager_cb);
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, delay_manager.get_timer_fd(), &ev);
//if (ret!= 0) {
// mylog(log_fatal,"add delay_manager.get_timer_fd() error\n");
// myexit(-1);
//}
delay_manager.set_loop_and_cb(loop,delay_manager_cb);
conn_info.fec_encode_manager.set_data(&conn_info); conn_info.fec_encode_manager.set_data(&conn_info);
conn_info.fec_encode_manager.set_loop_and_cb(loop,fec_encode_cb); conn_info.fec_encode_manager.set_loop_and_cb(loop, fec_encode_cb);
//u64_t tmp_fd64=conn_info.fec_encode_manager.get_timer_fd64(); // u64_t tmp_fd64=conn_info.fec_encode_manager.get_timer_fd64();
//ev.events = EPOLLIN; // ev.events = EPOLLIN;
//ev.data.u64 = tmp_fd64; // ev.data.u64 = tmp_fd64;
//mylog(log_debug,"conn_info.fec_encode_manager.get_timer_fd64()=%llu\n",conn_info.fec_encode_manager.get_timer_fd64());
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd_manager.to_fd(tmp_fd64), &ev);
//if (ret!= 0) {
// mylog(log_fatal,"add fec_encode_manager.get_timer_fd64() error\n");
// myexit(-1);
//}
conn_info.timer.data=&conn_info;
ev_init(&conn_info.timer,conn_timer_cb);
ev_timer_set(&conn_info.timer, 0, timer_interval/1000.0 );
ev_timer_start(loop,&conn_info.timer);
//conn_info.timer.add_fd_to_epoll(epoll_fd);
//conn_info.timer.set_timer_repeat_us(timer_interval*1000);
//mylog(log_debug,"conn_info.timer.get_timer_fd()=%d\n",conn_info.timer.get_timer_fd());
// mylog(log_debug,"conn_info.fec_encode_manager.get_timer_fd64()=%llu\n",conn_info.fec_encode_manager.get_timer_fd64());
// ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd_manager.to_fd(tmp_fd64), &ev);
// if (ret!= 0) {
// mylog(log_fatal,"add fec_encode_manager.get_timer_fd64() error\n");
// myexit(-1);
// }
conn_info.timer.data = &conn_info;
ev_init(&conn_info.timer, conn_timer_cb);
ev_timer_set(&conn_info.timer, 0, timer_interval / 1000.0);
ev_timer_start(loop, &conn_info.timer);
// conn_info.timer.add_fd_to_epoll(epoll_fd);
// conn_info.timer.set_timer_repeat_us(timer_interval*1000);
// mylog(log_debug,"conn_info.timer.get_timer_fd()=%d\n",conn_info.timer.get_timer_fd());
struct ev_io fifo_watcher; struct ev_io fifo_watcher;
int fifo_fd=-1; int fifo_fd = -1;
if(fifo_file[0]!=0) if (fifo_file[0] != 0) {
{ fifo_fd = create_fifo(fifo_file);
fifo_fd=create_fifo(fifo_file); // ev.events = EPOLLIN;
//ev.events = EPOLLIN; // ev.data.u64 = fifo_fd;
//ev.data.u64 = fifo_fd;
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fifo_fd, &ev); // ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fifo_fd, &ev);
//if (ret!= 0) { // if (ret!= 0) {
// mylog(log_fatal,"add fifo_fd to epoll error %s\n",strerror(errno)); // mylog(log_fatal,"add fifo_fd to epoll error %s\n",strerror(errno));
// myexit(-1); // myexit(-1);
//} // }
mylog(log_info,"fifo_file=%s\n",fifo_file); mylog(log_info, "fifo_file=%s\n", fifo_file);
ev_io_init(&fifo_watcher, fifo_cb, fifo_fd, EV_READ); ev_io_init(&fifo_watcher, fifo_cb, fifo_fd, EV_READ);
ev_io_start(loop, &fifo_watcher); ev_io_start(loop, &fifo_watcher);
}
} ev_prepare prepare_watcher;
ev_init(&prepare_watcher, prepare_cb);
ev_prepare_start(loop, &prepare_watcher);
ev_prepare prepare_watcher; mylog(log_info, "now listening at %s\n", local_addr.get_str());
ev_init(&prepare_watcher,prepare_cb);
ev_prepare_start(loop,&prepare_watcher);
mylog(log_info,"now listening at %s\n",local_addr.get_str()); ev_run(loop, 0);
ev_run(loop, 0); mylog(log_warn, "ev_run returned\n");
myexit(0);
mylog(log_warn,"ev_run returned\n"); /*
myexit(0); while(1)////////////////////////
{
if(about_to_exit) myexit(0);
/* int nfds = epoll_wait(epoll_fd, events, max_events, 180 * 1000);
while(1)//////////////////////// if (nfds < 0) { //allow zero
{ if(errno==EINTR )
if(about_to_exit) myexit(0); {
mylog(log_info,"epoll interrupted by signal continue\n");
}
else
{
mylog(log_fatal,"epoll_wait return %d,%s\n", nfds,strerror(errno));
myexit(-1);
}
}
int idx;
for (idx = 0; idx < nfds; ++idx) {
if(events[idx].data.u64==(u64_t)conn_info.timer.get_timer_fd())
{
int nfds = epoll_wait(epoll_fd, events, max_events, 180 * 1000); }
if (nfds < 0) { //allow zero
if(errno==EINTR )
{
mylog(log_info,"epoll interrupted by signal continue\n");
}
else
{
mylog(log_fatal,"epoll_wait return %d,%s\n", nfds,strerror(errno));
myexit(-1);
}
}
int idx;
for (idx = 0; idx < nfds; ++idx) {
if(events[idx].data.u64==(u64_t)conn_info.timer.get_timer_fd())
{
} else if (events[idx].data.u64 == (u64_t)fifo_fd)
{
else if (events[idx].data.u64 == (u64_t)fifo_fd) }
{ else if (events[idx].data.u64 == (u64_t)local_listen_fd||events[idx].data.u64 == conn_info.fec_encode_manager.get_timer_fd64())
{
} }
else if (events[idx].data.u64 == (u64_t)local_listen_fd||events[idx].data.u64 == conn_info.fec_encode_manager.get_timer_fd64()) else if (events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()) {
{
} }
else if (events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()) { else if(events[idx].data.u64>u32_t(-1) )
{
} }
else if(events[idx].data.u64>u32_t(-1) ) else
{ {
mylog(log_fatal,"unknown fd,this should never happen\n");
} myexit(-1);
else }
{ }
mylog(log_fatal,"unknown fd,this should never happen\n"); //delay_manager.check();
myexit(-1); }*/
} return 0;
}
//delay_manager.check();
}*/
return 0;
} }

View File

@ -11,493 +11,454 @@ static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int re
static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents); static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents);
static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents); static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents);
enum tmp_mode_t{is_from_remote=0,is_fec_timeout,is_conn_timer}; enum tmp_mode_t { is_from_remote = 0,
is_fec_timeout,
is_conn_timer };
void data_from_remote_or_fec_timeout_or_conn_timer(conn_info_t & conn_info,fd64_t fd64,tmp_mode_t mode) void data_from_remote_or_fec_timeout_or_conn_timer(conn_info_t &conn_info, fd64_t fd64, tmp_mode_t mode) {
{ int ret;
int ret;
char data[buf_len]; char data[buf_len];
int data_len; int data_len;
u32_t conv; u32_t conv;
//fd64_t fd64=events[idx].data.u64; // fd64_t fd64=events[idx].data.u64;
//mylog(log_trace,"events[idx].data.u64 >u32_t(-1),%llu\n",(u64_t)events[idx].data.u64); // mylog(log_trace,"events[idx].data.u64 >u32_t(-1),%llu\n",(u64_t)events[idx].data.u64);
// assert(fd_manager.exist_info(fd64));
// ip_port_t ip_port=fd_manager.get_info(fd64).ip_port;
//assert(fd_manager.exist_info(fd64)); // conn_info_t &conn_info=conn_manager.find(ip_port);
//ip_port_t ip_port=fd_manager.get_info(fd64).ip_port; address_t &addr = conn_info.addr;
assert(conn_manager.exist(addr));
int &local_listen_fd = conn_info.local_listen_fd;
//conn_info_t &conn_info=conn_manager.find(ip_port); int out_n = -2;
address_t &addr=conn_info.addr; char **out_arr;
assert(conn_manager.exist(addr)); int *out_len;
my_time_t *out_delay;
int &local_listen_fd=conn_info.local_listen_fd; dest_t dest;
dest.inner.fd_addr.fd = local_listen_fd;
dest.inner.fd_addr.addr = addr;
dest.type = type_fd_addr;
dest.cook = 1;
int out_n=-2;char **out_arr;int *out_len;my_time_t *out_delay; if (mode == is_fec_timeout) {
assert(fd64 == 0);
dest_t dest; // uint64_t value;
dest.inner.fd_addr.fd=local_listen_fd; // if((ret=read(fd_manager.to_fd(fd64), &value, 8))!=8)
dest.inner.fd_addr.addr=addr; //{
dest.type=type_fd_addr; // mylog(log_trace,"fd_manager.to_fd(fd64), &value, 8)!=8 ,%d\n",ret);
dest.cook=1; // continue;
// }
if(mode==is_fec_timeout) // if(value==0)
{ //{
assert(fd64==0); // mylog(log_trace,"value==0\n");
//uint64_t value; // continue;
//if((ret=read(fd_manager.to_fd(fd64), &value, 8))!=8) // }
//{ // assert(value==1);
// mylog(log_trace,"fd_manager.to_fd(fd64), &value, 8)!=8 ,%d\n",ret); from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay);
// continue; } else if (mode == is_conn_timer) {
//} assert(fd64 == 0);
//if(value==0) // uint64_t value;
//{ // read(conn_info.timer.get_timer_fd(), &value, 8);
// mylog(log_trace,"value==0\n"); conn_info.conv_manager.s.clear_inactive();
// continue; if (debug_force_flush_fec) {
//} from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay);
//assert(value==1);
from_normal_to_fec(conn_info,0,0,out_n,out_arr,out_len,out_delay);
}
else if(mode==is_conn_timer)
{
assert(fd64==0);
//uint64_t value;
//read(conn_info.timer.get_timer_fd(), &value, 8);
conn_info.conv_manager.s.clear_inactive();
if(debug_force_flush_fec)
{
from_normal_to_fec(conn_info,0,0,out_n,out_arr,out_len,out_delay);
}
conn_info.stat.report_as_server(addr);
return;
}
else if(mode==is_from_remote)
{
if(!fd_manager.exist(fd64)) //fd64 has been closed
{
mylog(log_warn,"!fd_manager.exist(fd64)\n");
return;
}
//fd64_t &fd64 =conn_info.remote_fd64;
assert(conn_info.conv_manager.s.is_data_used(fd64));
conv=conn_info.conv_manager.s.find_conv_by_data(fd64);
conn_info.conv_manager.s.update_active_time(conv);
conn_info.update_active_time();
int fd=fd_manager.to_fd(fd64);
data_len=recv(fd,data,max_data_len+1,0);
if(data_len==max_data_len+1)
{
mylog(log_warn,"huge packet from upper level, data_len > %d, packet truncated, dropped\n",max_data_len);
return ;
}
mylog(log_trace,"received a packet from udp_fd,len:%d,conv=%d\n",data_len,conv);
if(data_len<0)
{
mylog(log_debug,"udp fd,recv_len<0 continue,%s\n",get_sock_error());
return;
}
if(!disable_mtu_warn&&data_len>=mtu_warn)
{
mylog(log_warn,"huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ",data_len,mtu_warn);
}
char * new_data;
int new_len;
put_conv(conv,data,data_len,new_data,new_len);
from_normal_to_fec(conn_info,new_data,new_len,out_n,out_arr,out_len,out_delay);
}
else
{
assert(0==1);
}
mylog(log_trace,"out_n=%d\n",out_n);
for(int i=0;i<out_n;i++)
{
delay_send(out_delay[i],dest,out_arr[i],out_len[i]);
}
}
static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int revents)
{
assert(!(revents&EV_ERROR));
int local_listen_fd=watcher->fd;
int ret;
mylog(log_trace,"events[idx].data.u64 == (u64_t)local_listen_fd\n");
char data[buf_len];
int data_len;
address_t::storage_t udp_new_addr_in={0};
socklen_t udp_new_addr_len = sizeof(address_t::storage_t);
if ((data_len = recvfrom(local_listen_fd, data, max_data_len+1, 0,
(struct sockaddr *) &udp_new_addr_in, &udp_new_addr_len)) == -1) {
mylog(log_error,"recv_from error,this shouldnt happen,err=%s,but we can try to continue\n",get_sock_error());
return;
};
if(data_len==max_data_len+1)
{
mylog(log_warn,"huge packet, data_len > %d, packet truncated, dropped\n",max_data_len);
return ;
} }
address_t addr; conn_info.stat.report_as_server(addr);
addr.from_sockaddr((struct sockaddr *) &udp_new_addr_in,udp_new_addr_len); return;
} else if (mode == is_from_remote) {
if (!fd_manager.exist(fd64)) // fd64 has been closed
{
mylog(log_warn, "!fd_manager.exist(fd64)\n");
return;
}
mylog(log_trace,"Received packet from %s,len: %d\n", addr.get_str(),data_len); // fd64_t &fd64 =conn_info.remote_fd64;
assert(conn_info.conv_manager.s.is_data_used(fd64));
if(!disable_mtu_warn&&data_len>=mtu_warn)///////////////////////delete this for type 0 in furture conv = conn_info.conv_manager.s.find_conv_by_data(fd64);
{ conn_info.conv_manager.s.update_active_time(conv);
mylog(log_warn,"huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ",data_len,mtu_warn); conn_info.update_active_time();
}
int fd = fd_manager.to_fd(fd64);
data_len = recv(fd, data, max_data_len + 1, 0);
if(de_cook(data,data_len)!=0) if (data_len == max_data_len + 1) {
{ mylog(log_warn, "huge packet from upper level, data_len > %d, packet truncated, dropped\n", max_data_len);
mylog(log_debug,"de_cook error"); return;
return; }
}
mylog(log_trace, "received a packet from udp_fd,len:%d,conv=%d\n", data_len, conv);
if (data_len < 0) {
mylog(log_debug, "udp fd,recv_len<0 continue,%s\n", get_sock_error());
if(!conn_manager.exist(addr)) return;
{ }
if(conn_manager.mp.size() >=max_conn_num)
{
mylog(log_warn,"new connection %s ignored bc max_conn_num exceed\n",addr.get_str());
return;
}
//conn_manager.insert(addr); if (!disable_mtu_warn && data_len >= mtu_warn) {
conn_info_t &conn_info=conn_manager.find_insert(addr); mylog(log_warn, "huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn);
conn_info.addr=addr; }
conn_info.loop=ev_default_loop(0);
conn_info.local_listen_fd=local_listen_fd;
//u64_t fec_fd64=conn_info.fec_encode_manager.get_timer_fd64(); char *new_data;
//mylog(log_debug,"fec_fd64=%llu\n",fec_fd64); int new_len;
//ev.events = EPOLLIN; put_conv(conv, data, data_len, new_data, new_len);
//ev.data.u64 = fec_fd64;
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd_manager.to_fd(fec_fd64), &ev);
//fd_manager.get_info(fec_fd64).ip_port=ip_port; from_normal_to_fec(conn_info, new_data, new_len, out_n, out_arr, out_len, out_delay);
} else {
assert(0 == 1);
}
conn_info.timer.data=&conn_info; mylog(log_trace, "out_n=%d\n", out_n);
ev_init(&conn_info.timer,conn_timer_cb); for (int i = 0; i < out_n; i++) {
ev_timer_set(&conn_info.timer, 0, timer_interval/1000.0 ); delay_send(out_delay[i], dest, out_arr[i], out_len[i]);
ev_timer_start(loop,&conn_info.timer); }
//conn_info.timer.add_fd64_to_epoll(epoll_fd);
//conn_info.timer.set_timer_repeat_us(timer_interval*1000);
//mylog(log_debug,"conn_info.timer.get_timer_fd64()=%llu\n",conn_info.timer.get_timer_fd64());
//u64_t timer_fd64=conn_info.timer.get_timer_fd64();
//fd_manager.get_info(timer_fd64).ip_port=ip_port;
conn_info.fec_encode_manager.set_data(&conn_info);
conn_info.fec_encode_manager.set_loop_and_cb(loop,fec_encode_cb);
mylog(log_info,"new connection from %s\n",addr.get_str());
}
conn_info_t &conn_info=conn_manager.find_insert(addr);
conn_info.update_active_time();
int out_n;char **out_arr;int *out_len;my_time_t *out_delay;
from_fec_to_normal(conn_info,data,data_len,out_n,out_arr,out_len,out_delay);
mylog(log_trace,"out_n= %d\n",out_n);
for(int i=0;i<out_n;i++)
{
u32_t conv;
char *new_data;
int new_len;
if(get_conv(conv,out_arr[i],out_len[i],new_data,new_len)!=0)
{
mylog(log_debug,"get_conv failed");
continue;
}
if (!conn_info.conv_manager.s.is_conv_used(conv))
{
if(conn_info.conv_manager.s.get_size() >=max_conv_num)
{
mylog(log_warn,"ignored new udp connect bc max_conv_num exceed\n");
continue;
}
int new_udp_fd;
ret=new_connected_socket2(new_udp_fd,remote_addr,out_addr,out_interface);
if (ret != 0) {
mylog(log_warn, "[%s]new_connected_socket failed\n",addr.get_str());
continue;
}
fd64_t fd64 = fd_manager.create(new_udp_fd);
//ev.events = EPOLLIN;
//ev.data.u64 = fd64;
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, new_udp_fd, &ev);
conn_info.conv_manager.s.insert_conv(conv, fd64);
fd_manager.get_info(fd64).addr=addr;
ev_io &io_watcher=fd_manager.get_info(fd64).io_watcher;
io_watcher.u64=fd64;
io_watcher.data=&conn_info;
ev_init(&io_watcher,remote_cb);
ev_io_set(&io_watcher,new_udp_fd,EV_READ);
ev_io_start(conn_info.loop,&io_watcher);
mylog(log_info,"[%s]new conv %x,fd %d created,fd64=%llu\n",addr.get_str(),conv,new_udp_fd,fd64);
}
conn_info.conv_manager.s.update_active_time(conv);
fd64_t fd64= conn_info.conv_manager.s.find_data_by_conv(conv);
dest_t dest;
dest.type=type_fd64;
dest.inner.fd64=fd64;
delay_send(out_delay[i],dest,new_data,new_len);
}
} }
static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
conn_info_t & conn_info= *((conn_info_t*)watcher->data); int local_listen_fd = watcher->fd;
fd64_t fd64=watcher->u64; int ret;
data_from_remote_or_fec_timeout_or_conn_timer(conn_info,fd64,is_from_remote); mylog(log_trace, "events[idx].data.u64 == (u64_t)local_listen_fd\n");
char data[buf_len];
int data_len;
address_t::storage_t udp_new_addr_in = {0};
socklen_t udp_new_addr_len = sizeof(address_t::storage_t);
if ((data_len = recvfrom(local_listen_fd, data, max_data_len + 1, 0,
(struct sockaddr *)&udp_new_addr_in, &udp_new_addr_len)) == -1) {
mylog(log_error, "recv_from error,this shouldnt happen,err=%s,but we can try to continue\n", get_sock_error());
return;
};
if (data_len == max_data_len + 1) {
mylog(log_warn, "huge packet, data_len > %d, packet truncated, dropped\n", max_data_len);
return;
}
address_t addr;
addr.from_sockaddr((struct sockaddr *)&udp_new_addr_in, udp_new_addr_len);
mylog(log_trace, "Received packet from %s,len: %d\n", addr.get_str(), data_len);
if (!disable_mtu_warn && data_len >= mtu_warn) ///////////////////////delete this for type 0 in furture
{
mylog(log_warn, "huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn);
}
if (de_cook(data, data_len) != 0) {
mylog(log_debug, "de_cook error");
return;
}
if (!conn_manager.exist(addr)) {
if (conn_manager.mp.size() >= max_conn_num) {
mylog(log_warn, "new connection %s ignored bc max_conn_num exceed\n", addr.get_str());
return;
}
// conn_manager.insert(addr);
conn_info_t &conn_info = conn_manager.find_insert(addr);
conn_info.addr = addr;
conn_info.loop = ev_default_loop(0);
conn_info.local_listen_fd = local_listen_fd;
// u64_t fec_fd64=conn_info.fec_encode_manager.get_timer_fd64();
// mylog(log_debug,"fec_fd64=%llu\n",fec_fd64);
// ev.events = EPOLLIN;
// ev.data.u64 = fec_fd64;
// ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd_manager.to_fd(fec_fd64), &ev);
// fd_manager.get_info(fec_fd64).ip_port=ip_port;
conn_info.timer.data = &conn_info;
ev_init(&conn_info.timer, conn_timer_cb);
ev_timer_set(&conn_info.timer, 0, timer_interval / 1000.0);
ev_timer_start(loop, &conn_info.timer);
// conn_info.timer.add_fd64_to_epoll(epoll_fd);
// conn_info.timer.set_timer_repeat_us(timer_interval*1000);
// mylog(log_debug,"conn_info.timer.get_timer_fd64()=%llu\n",conn_info.timer.get_timer_fd64());
// u64_t timer_fd64=conn_info.timer.get_timer_fd64();
// fd_manager.get_info(timer_fd64).ip_port=ip_port;
conn_info.fec_encode_manager.set_data(&conn_info);
conn_info.fec_encode_manager.set_loop_and_cb(loop, fec_encode_cb);
mylog(log_info, "new connection from %s\n", addr.get_str());
}
conn_info_t &conn_info = conn_manager.find_insert(addr);
conn_info.update_active_time();
int out_n;
char **out_arr;
int *out_len;
my_time_t *out_delay;
from_fec_to_normal(conn_info, data, data_len, out_n, out_arr, out_len, out_delay);
mylog(log_trace, "out_n= %d\n", out_n);
for (int i = 0; i < out_n; i++) {
u32_t conv;
char *new_data;
int new_len;
if (get_conv(conv, out_arr[i], out_len[i], new_data, new_len) != 0) {
mylog(log_debug, "get_conv failed");
continue;
}
if (!conn_info.conv_manager.s.is_conv_used(conv)) {
if (conn_info.conv_manager.s.get_size() >= max_conv_num) {
mylog(log_warn, "ignored new udp connect bc max_conv_num exceed\n");
continue;
}
int new_udp_fd;
ret = new_connected_socket2(new_udp_fd, remote_addr, out_addr, out_interface);
if (ret != 0) {
mylog(log_warn, "[%s]new_connected_socket failed\n", addr.get_str());
continue;
}
fd64_t fd64 = fd_manager.create(new_udp_fd);
// ev.events = EPOLLIN;
// ev.data.u64 = fd64;
// ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, new_udp_fd, &ev);
conn_info.conv_manager.s.insert_conv(conv, fd64);
fd_manager.get_info(fd64).addr = addr;
ev_io &io_watcher = fd_manager.get_info(fd64).io_watcher;
io_watcher.u64 = fd64;
io_watcher.data = &conn_info;
ev_init(&io_watcher, remote_cb);
ev_io_set(&io_watcher, new_udp_fd, EV_READ);
ev_io_start(conn_info.loop, &io_watcher);
mylog(log_info, "[%s]new conv %x,fd %d created,fd64=%llu\n", addr.get_str(), conv, new_udp_fd, fd64);
}
conn_info.conv_manager.s.update_active_time(conv);
fd64_t fd64 = conn_info.conv_manager.s.find_data_by_conv(conv);
dest_t dest;
dest.type = type_fd64;
dest.inner.fd64 = fd64;
delay_send(out_delay[i], dest, new_data, new_len);
}
} }
static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
int fifo_fd=watcher->fd; conn_info_t &conn_info = *((conn_info_t *)watcher->data);
fd64_t fd64 = watcher->u64;
char buf[buf_len]; data_from_remote_or_fec_timeout_or_conn_timer(conn_info, fd64, is_from_remote);
int len=read (fifo_fd, buf, sizeof (buf));
if(len<0)
{
mylog(log_warn,"fifo read failed len=%d,errno=%s\n",len,get_sock_error());
return;
}
buf[len]=0;
handle_command(buf);
} }
static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
//uint64_t value; int fifo_fd = watcher->fd;
//read(delay_manager.get_timer_fd(), &value, 8);
//mylog(log_trace,"events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()\n");
//do nothing
char buf[buf_len];
int len = read(fifo_fd, buf, sizeof(buf));
if (len < 0) {
mylog(log_warn, "fifo read failed len=%d,errno=%s\n", len, get_sock_error());
return;
}
buf[len] = 0;
handle_command(buf);
} }
static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
conn_info_t & conn_info= *((conn_info_t*)watcher->data); // uint64_t value;
// read(delay_manager.get_timer_fd(), &value, 8);
// mylog(log_trace,"events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()\n");
data_from_remote_or_fec_timeout_or_conn_timer(conn_info,0,is_fec_timeout); // do nothing
} }
static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
conn_info_t & conn_info= *((conn_info_t*)watcher->data); conn_info_t &conn_info = *((conn_info_t *)watcher->data);
data_from_remote_or_fec_timeout_or_conn_timer(conn_info,0,is_conn_timer); data_from_remote_or_fec_timeout_or_conn_timer(conn_info, 0, is_fec_timeout);
} }
static void prepare_cb(struct ev_loop *loop, struct ev_prepare *watcher, int revents) static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
delay_manager.check(); conn_info_t &conn_info = *((conn_info_t *)watcher->data);
data_from_remote_or_fec_timeout_or_conn_timer(conn_info, 0, is_conn_timer);
} }
static void global_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void prepare_cb(struct ev_loop *loop, struct ev_prepare *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
assert(!(revents&EV_ERROR));
//uint64_t value; delay_manager.check();
//read(timer.get_timer_fd(), &value, 8);
conn_manager.clear_inactive();
mylog(log_trace,"events[idx].data.u64==(u64_t)timer.get_timer_fd()\n");
} }
int tunnel_server_event_loop() static void global_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{ assert(!(revents & EV_ERROR));
int i, j, k;int ret; // uint64_t value;
int yes = 1; // read(timer.get_timer_fd(), &value, 8);
//int epoll_fd; conn_manager.clear_inactive();
//int remote_fd; mylog(log_trace, "events[idx].data.u64==(u64_t)timer.get_timer_fd()\n");
}
int local_listen_fd; int tunnel_server_event_loop() {
new_listen_socket2(local_listen_fd,local_addr); int i, j, k;
int ret;
int yes = 1;
// int epoll_fd;
// int remote_fd;
//epoll_fd = epoll_create1(0); int local_listen_fd;
//assert(epoll_fd>0); new_listen_socket2(local_listen_fd, local_addr);
//const int max_events = 4096; // epoll_fd = epoll_create1(0);
//struct epoll_event ev, events[max_events]; // assert(epoll_fd>0);
//if (epoll_fd < 0) {
// mylog(log_fatal,"epoll return %d\n", epoll_fd);
// myexit(-1);
//}
struct ev_loop * loop= ev_default_loop(0); // const int max_events = 4096;
assert(loop != NULL); // struct epoll_event ev, events[max_events];
// if (epoll_fd < 0) {
// mylog(log_fatal,"epoll return %d\n", epoll_fd);
// myexit(-1);
// }
//ev.events = EPOLLIN; struct ev_loop *loop = ev_default_loop(0);
//ev.data.u64 = local_listen_fd; assert(loop != NULL);
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, local_listen_fd, &ev);
//if (ret!=0) { // ev.events = EPOLLIN;
// mylog(log_fatal,"add udp_listen_fd error\n"); // ev.data.u64 = local_listen_fd;
// myexit(-1); // ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, local_listen_fd, &ev);
//} // if (ret!=0) {
struct ev_io local_listen_watcher; // mylog(log_fatal,"add udp_listen_fd error\n");
// myexit(-1);
// }
struct ev_io local_listen_watcher;
ev_io_init(&local_listen_watcher, local_listen_cb, local_listen_fd, EV_READ); ev_io_init(&local_listen_watcher, local_listen_cb, local_listen_fd, EV_READ);
ev_io_start(loop, &local_listen_watcher); ev_io_start(loop, &local_listen_watcher);
//ev.events = EPOLLIN; // ev.events = EPOLLIN;
//ev.data.u64 = delay_manager.get_timer_fd(); // ev.data.u64 = delay_manager.get_timer_fd();
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, delay_manager.get_timer_fd(), &ev); // ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, delay_manager.get_timer_fd(), &ev);
//if (ret!= 0) { // if (ret!= 0) {
// mylog(log_fatal,"add delay_manager.get_timer_fd() error\n"); // mylog(log_fatal,"add delay_manager.get_timer_fd() error\n");
// myexit(-1); // myexit(-1);
//} // }
delay_manager.set_loop_and_cb(loop,delay_manager_cb); delay_manager.set_loop_and_cb(loop, delay_manager_cb);
//mylog(log_debug," delay_manager.get_timer_fd() =%d\n", delay_manager.get_timer_fd()); // mylog(log_debug," delay_manager.get_timer_fd() =%d\n", delay_manager.get_timer_fd());
mylog(log_info,"now listening at %s\n",local_addr.get_str()); mylog(log_info, "now listening at %s\n", local_addr.get_str());
//my_timer_t timer; // my_timer_t timer;
//timer.add_fd_to_epoll(epoll_fd); // timer.add_fd_to_epoll(epoll_fd);
//timer.set_timer_repeat_us(timer_interval*1000); // timer.set_timer_repeat_us(timer_interval*1000);
ev_timer global_timer; ev_timer global_timer;
ev_init(&global_timer,global_timer_cb); ev_init(&global_timer, global_timer_cb);
ev_timer_set(&global_timer, 0, timer_interval/1000.0 ); ev_timer_set(&global_timer, 0, timer_interval / 1000.0);
ev_timer_start(loop,&global_timer); ev_timer_start(loop, &global_timer);
//mylog(log_debug," timer.get_timer_fd() =%d\n",timer.get_timer_fd()); // mylog(log_debug," timer.get_timer_fd() =%d\n",timer.get_timer_fd());
struct ev_io fifo_watcher; struct ev_io fifo_watcher;
int fifo_fd=-1; int fifo_fd = -1;
if(fifo_file[0]!=0) if (fifo_file[0] != 0) {
{ fifo_fd = create_fifo(fifo_file);
fifo_fd=create_fifo(fifo_file); // ev.events = EPOLLIN;
//ev.events = EPOLLIN; // ev.data.u64 = fifo_fd;
//ev.data.u64 = fifo_fd;
//ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fifo_fd, &ev); // ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fifo_fd, &ev);
//if (ret!= 0) { // if (ret!= 0) {
//mylog(log_fatal,"add fifo_fd to epoll error %s\n",strerror(errno)); // mylog(log_fatal,"add fifo_fd to epoll error %s\n",strerror(errno));
//myexit(-1); // myexit(-1);
//} //}
ev_io_init(&fifo_watcher, fifo_cb, fifo_fd, EV_READ); ev_io_init(&fifo_watcher, fifo_cb, fifo_fd, EV_READ);
ev_io_start(loop, &fifo_watcher); ev_io_start(loop, &fifo_watcher);
mylog(log_info,"fifo_file=%s\n",fifo_file); mylog(log_info, "fifo_file=%s\n", fifo_file);
} }
ev_prepare prepare_watcher; ev_prepare prepare_watcher;
ev_init(&prepare_watcher,prepare_cb); ev_init(&prepare_watcher, prepare_cb);
ev_prepare_start(loop,&prepare_watcher); ev_prepare_start(loop, &prepare_watcher);
ev_run(loop, 0);
mylog(log_warn, "ev_run returned\n");
myexit(0);
/*
while(1)////////////////////////
{
if(about_to_exit) myexit(0);
int nfds = epoll_wait(epoll_fd, events, max_events, 180 * 1000);
if (nfds < 0) { //allow zero
if(errno==EINTR )
{
mylog(log_info,"epoll interrupted by signal,continue\n");
}
else
{
mylog(log_fatal,"epoll_wait return %d,%s\n", nfds,strerror(errno));
myexit(-1);
}
}
int idx;
for (idx = 0; idx < nfds; ++idx)
{
if(events[idx].data.u64==(u64_t)timer.get_timer_fd())
{
}
else if (events[idx].data.u64 == (u64_t)fifo_fd)
{
}
else if (events[idx].data.u64 == (u64_t)local_listen_fd)
{
ev_run(loop, 0); }
else if (events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()) {
mylog(log_warn,"ev_run returned\n"); }
myexit(0); else if (events[idx].data.u64 >u32_t(-1))
{
/*
while(1)////////////////////////
{
if(about_to_exit) myexit(0);
int nfds = epoll_wait(epoll_fd, events, max_events, 180 * 1000);
if (nfds < 0) { //allow zero
if(errno==EINTR )
{
mylog(log_info,"epoll interrupted by signal,continue\n");
}
else
{
mylog(log_fatal,"epoll_wait return %d,%s\n", nfds,strerror(errno));
myexit(-1);
}
}
int idx;
for (idx = 0; idx < nfds; ++idx)
{
if(events[idx].data.u64==(u64_t)timer.get_timer_fd())
{
}
else if (events[idx].data.u64 == (u64_t)fifo_fd)
{
}
else if (events[idx].data.u64 == (u64_t)local_listen_fd)
{
} }
else if (events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()) { else
{
mylog(log_fatal,"unknown fd,this should never happen\n");
myexit(-1);
}
}
} }*/
else if (events[idx].data.u64 >u32_t(-1))
{
}
else
{
mylog(log_fatal,"unknown fd,this should never happen\n");
myexit(-1);
}
}
}*/
return 0;
return 0;
} }