fix indent problem with clang-format

This commit is contained in:
yancey 2023-02-07 05:34:06 -05:00
parent 43dfb12d9e
commit 41cac842a8
24 changed files with 4599 additions and 5433 deletions

View File

@ -16,7 +16,6 @@ int about_to_exit=0;
raw_mode_t raw_mode = mode_faketcp; raw_mode_t raw_mode = mode_faketcp;
unordered_map<int, const char *> raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}}; unordered_map<int, const char *> raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}};
// static int random_number_fd=-1; // static int random_number_fd=-1;
char iptables_rule[200] = ""; char iptables_rule[200] = "";
// int is_client = 0, is_server = 0; // int is_client = 0, is_server = 0;
@ -27,8 +26,7 @@ working_mode_t working_mode=tunnel_mode;
int socket_buf_size = 1024 * 1024; int socket_buf_size = 1024 * 1024;
int init_ws() int init_ws() {
{
#if defined(__MINGW32__) #if defined(__MINGW32__)
WORD wVersionRequested; WORD wVersionRequested;
WSADATA wsaData; WSADATA wsaData;
@ -57,18 +55,17 @@ int init_ws()
printf("Could not find a usable version of Winsock.dll\n"); printf("Could not find a usable version of Winsock.dll\n");
WSACleanup(); WSACleanup();
exit(-1); exit(-1);
} } else {
else
{
printf("The Winsock 2.2 dll was found okay"); printf("The Winsock 2.2 dll was found okay");
} }
int tmp[] = {0, 100, 200, 300, 500, 800, 1000, 2000, 3000, 4000, -1}; int tmp[] = {0, 100, 200, 300, 500, 800, 1000, 2000, 3000, 4000, -1};
int succ = 0; int succ = 0;
for(int i=1;tmp[i]!=-1;i++) for (int i = 1; tmp[i] != -1; i++) {
{ if (_setmaxstdio(100) == -1)
if(_setmaxstdio(100)==-1) break; break;
else succ=i; else
succ = i;
} }
printf(", _setmaxstdio() was set to %d\n", tmp[succ]); printf(", _setmaxstdio() was set to %d\n", tmp[succ]);
#endif #endif
@ -76,8 +73,7 @@ return 0;
} }
#if defined(__MINGW32__) #if defined(__MINGW32__)
int inet_pton(int af, const char *src, void *dst) int inet_pton(int af, const char *src, void *dst) {
{
struct sockaddr_storage ss; struct sockaddr_storage ss;
int size = sizeof(ss); int size = sizeof(ss);
char src_copy[INET6_ADDRSTRLEN + 1]; char src_copy[INET6_ADDRSTRLEN + 1];
@ -100,8 +96,7 @@ int inet_pton(int af, const char *src, void *dst)
return 0; return 0;
} }
const char *inet_ntop(int af, const void *src, char *dst, socklen_t size) const char *inet_ntop(int af, const void *src, char *dst, socklen_t size) {
{
struct sockaddr_storage ss; struct sockaddr_storage ss;
unsigned long s = size; unsigned long s = size;
@ -119,11 +114,9 @@ const char *inet_ntop(int af, const void *src, char *dst, socklen_t size)
return NULL; return NULL;
} }
/* cannot direclty use &size because of strict aliasing rules */ /* cannot direclty use &size because of strict aliasing rules */
return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0)? return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0) ? dst : NULL;
dst : NULL;
} }
char *get_sock_error() char *get_sock_error() {
{
static char buf[1000]; static char buf[1000];
int e = WSAGetLastError(); int e = WSAGetLastError();
wchar_t *s = NULL; wchar_t *s = NULL;
@ -137,26 +130,21 @@ char *get_sock_error()
LocalFree(s); LocalFree(s);
return buf; return buf;
} }
int get_sock_errno() int get_sock_errno() {
{
return WSAGetLastError(); return WSAGetLastError();
} }
#else #else
char *get_sock_error() char *get_sock_error() {
{
static char buf[1000]; static char buf[1000];
sprintf(buf, "%d:%s", errno, strerror(errno)); sprintf(buf, "%d:%s", errno, strerror(errno));
return buf; return buf;
} }
int get_sock_errno() int get_sock_errno() {
{
return errno; return errno;
} }
#endif #endif
struct my_random_t {
struct my_random_t
{
std::random_device rd; std::random_device rd;
std::mt19937 gen; std::mt19937 gen;
std::uniform_int_distribution<u64_t> dis64; std::uniform_int_distribution<u64_t> dis64;
@ -164,23 +152,19 @@ struct my_random_t
std::uniform_int_distribution<unsigned char> dis8; std::uniform_int_distribution<unsigned char> dis8;
my_random_t() my_random_t() {
{
std::mt19937 gen_tmp(rd()); std::mt19937 gen_tmp(rd());
gen = gen_tmp; gen = gen_tmp;
gen.discard(700000); // magic gen.discard(700000); // magic
} }
u64_t gen64() u64_t gen64() {
{
return dis64(gen); return dis64(gen);
} }
u32_t gen32() u32_t gen32() {
{
return dis32(gen); return dis32(gen);
} }
unsigned char gen8() unsigned char gen8() {
{
return dis8(gen); return dis8(gen);
} }
/*int random_number_fd; /*int random_number_fd;
@ -201,74 +185,57 @@ struct my_random_t
}*/ }*/
} my_random; } my_random;
int address_t::from_str(char *str) int address_t::from_str(char *str) {
{
clear(); clear();
char ip_addr_str[100];u32_t port; char ip_addr_str[100];
u32_t port;
mylog(log_info, "parsing address: %s\n", str); mylog(log_info, "parsing address: %s\n", str);
int is_ipv6 = 0; int is_ipv6 = 0;
if(sscanf(str, "[%[^]]]:%u", ip_addr_str,&port)==2) if (sscanf(str, "[%[^]]]:%u", ip_addr_str, &port) == 2) {
{
mylog(log_info, "its an ipv6 adress\n"); mylog(log_info, "its an ipv6 adress\n");
inner.ipv6.sin6_family = AF_INET6; inner.ipv6.sin6_family = AF_INET6;
is_ipv6 = 1; is_ipv6 = 1;
} } else if (sscanf(str, "%[^:]:%u", ip_addr_str, &port) == 2) {
else if(sscanf(str, "%[^:]:%u", ip_addr_str,&port)==2)
{
mylog(log_info, "its an ipv4 adress\n"); mylog(log_info, "its an ipv4 adress\n");
inner.ipv4.sin_family = AF_INET; inner.ipv4.sin_family = AF_INET;
} } else {
else
{
mylog(log_error, "failed to parse\n"); mylog(log_error, "failed to parse\n");
myexit(-1); myexit(-1);
} }
mylog(log_info, "ip_address is {%s}, port is {%u}\n", ip_addr_str, port); mylog(log_info, "ip_address is {%s}, port is {%u}\n", ip_addr_str, port);
if(port>65535) if (port > 65535) {
{
mylog(log_error, "invalid port: %d\n", port); mylog(log_error, "invalid port: %d\n", port);
myexit(-1); myexit(-1);
} }
int ret = -100; int ret = -100;
if(is_ipv6) if (is_ipv6) {
{
ret = inet_pton(AF_INET6, ip_addr_str, &(inner.ipv6.sin6_addr)); ret = inet_pton(AF_INET6, ip_addr_str, &(inner.ipv6.sin6_addr));
inner.ipv6.sin6_port = htons(port); inner.ipv6.sin6_port = htons(port);
if (ret == 0) // 0 if address type doesnt match if (ret == 0) // 0 if address type doesnt match
{ {
mylog(log_error, "ip_addr %s is not an ipv6 address, %d\n", ip_addr_str, ret); mylog(log_error, "ip_addr %s is not an ipv6 address, %d\n", ip_addr_str, ret);
myexit(-1); myexit(-1);
} } else if (ret == 1) // inet_pton returns 1 on success
else if(ret==1) // inet_pton returns 1 on success
{ {
// okay // okay
} } else {
else
{
mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret); mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret);
myexit(-1); myexit(-1);
} }
} } else {
else
{
ret = inet_pton(AF_INET, ip_addr_str, &(inner.ipv4.sin_addr)); ret = inet_pton(AF_INET, ip_addr_str, &(inner.ipv4.sin_addr));
inner.ipv4.sin_port = htons(port); inner.ipv4.sin_port = htons(port);
if(ret==0) if (ret == 0) {
{
mylog(log_error, "ip_addr %s is not an ipv4 address, %d\n", ip_addr_str, ret); mylog(log_error, "ip_addr %s is not an ipv4 address, %d\n", ip_addr_str, ret);
myexit(-1); myexit(-1);
} } else if (ret == 1) {
else if(ret==1)
{
// okay // okay
} } else {
else
{
mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret); mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret);
myexit(-1); myexit(-1);
} }
@ -277,8 +244,7 @@ int address_t::from_str(char *str)
return 0; return 0;
} }
int address_t::from_str_ip_only(char * str) int address_t::from_str_ip_only(char *str) {
{
clear(); clear();
u32_t type; u32_t type;
@ -291,12 +257,9 @@ int address_t::from_str_ip_only(char * str)
((sockaddr *)&inner)->sa_family = type; ((sockaddr *)&inner)->sa_family = type;
int ret; int ret;
if(type==AF_INET) if (type == AF_INET) {
{
ret = inet_pton(type, str, &inner.ipv4.sin_addr); ret = inet_pton(type, str, &inner.ipv4.sin_addr);
} } else {
else
{
ret = inet_pton(type, str, &inner.ipv6.sin6_addr); ret = inet_pton(type, str, &inner.ipv6.sin6_addr);
} }
@ -304,43 +267,33 @@ int address_t::from_str_ip_only(char * str)
{ {
mylog(log_error, "confusion in parsing %s, %d\n", str, ret); mylog(log_error, "confusion in parsing %s, %d\n", str, ret);
myexit(-1); myexit(-1);
} } else if (ret == 1) // inet_pton returns 1 on success
else if(ret==1) // inet_pton returns 1 on success
{ {
// okay // okay
} } else {
else
{
mylog(log_error, "ip_addr %s is invalid, %d\n", str, ret); mylog(log_error, "ip_addr %s is invalid, %d\n", str, ret);
myexit(-1); myexit(-1);
} }
return 0; return 0;
} }
char * address_t::get_str() char *address_t::get_str() {
{
static char res[max_addr_len]; static char res[max_addr_len];
to_str(res); to_str(res);
return res; return res;
} }
void address_t::to_str(char * s) void address_t::to_str(char *s) {
{
// static char res[max_addr_len]; // static char res[max_addr_len];
char ip_addr[max_addr_len]; char ip_addr[max_addr_len];
u32_t port; u32_t port;
const char *ret = 0; const char *ret = 0;
if(get_type()==AF_INET6) if (get_type() == AF_INET6) {
{
ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len); ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len);
port = inner.ipv6.sin6_port; port = inner.ipv6.sin6_port;
} } else if (get_type() == AF_INET) {
else if(get_type()==AF_INET)
{
ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len); ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len);
port = inner.ipv4.sin_port; port = inner.ipv4.sin_port;
} } else {
else
{
assert(0 == 1); assert(0 == 1);
} }
@ -353,32 +306,24 @@ void address_t::to_str(char * s)
port = ntohs(port); port = ntohs(port);
ip_addr[max_addr_len - 1] = 0; ip_addr[max_addr_len - 1] = 0;
if(get_type()==AF_INET6) if (get_type() == AF_INET6) {
{
sprintf(s, "[%s]:%u", ip_addr, (u32_t)port); sprintf(s, "[%s]:%u", ip_addr, (u32_t)port);
}else } else {
{
sprintf(s, "%s:%u", ip_addr, (u32_t)port); sprintf(s, "%s:%u", ip_addr, (u32_t)port);
} }
// return res; // return res;
} }
char* address_t::get_ip() char *address_t::get_ip() {
{
char ip_addr[max_addr_len]; char ip_addr[max_addr_len];
static char s[max_addr_len]; static char s[max_addr_len];
const char *ret = 0; const char *ret = 0;
if(get_type()==AF_INET6) if (get_type() == AF_INET6) {
{
ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len); ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len);
} } else if (get_type() == AF_INET) {
else if(get_type()==AF_INET)
{
ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len); ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len);
} } else {
else
{
assert(0 == 1); assert(0 == 1);
} }
@ -389,43 +334,33 @@ char* address_t::get_ip()
} }
ip_addr[max_addr_len - 1] = 0; ip_addr[max_addr_len - 1] = 0;
if(get_type()==AF_INET6) if (get_type() == AF_INET6) {
{
sprintf(s, "%s", ip_addr); sprintf(s, "%s", ip_addr);
}else } else {
{
sprintf(s, "%s", ip_addr); sprintf(s, "%s", ip_addr);
} }
return s; return s;
} }
int address_t::from_sockaddr(sockaddr * addr,socklen_t slen) int address_t::from_sockaddr(sockaddr *addr, socklen_t slen) {
{
clear(); clear();
// memset(&inner,0,sizeof(inner)); // memset(&inner,0,sizeof(inner));
if(addr->sa_family==AF_INET6) if (addr->sa_family == AF_INET6) {
{
assert(slen == sizeof(sockaddr_in6)); assert(slen == sizeof(sockaddr_in6));
// inner.ipv6= *( (sockaddr_in6*) addr ); // inner.ipv6= *( (sockaddr_in6*) addr );
memcpy(&inner, addr, slen); memcpy(&inner, addr, slen);
} } else if (addr->sa_family == AF_INET) {
else if(addr->sa_family==AF_INET)
{
assert(slen == sizeof(sockaddr_in)); assert(slen == sizeof(sockaddr_in));
// inner.ipv4= *( (sockaddr_in*) addr ); // inner.ipv4= *( (sockaddr_in*) addr );
memcpy(&inner, addr, slen); memcpy(&inner, addr, slen);
} } else {
else
{
assert(0 == 1); assert(0 == 1);
} }
return 0; return 0;
} }
int address_t::new_connected_udp_fd() int address_t::new_connected_udp_fd() {
{
int new_udp_fd; int new_udp_fd;
new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP); new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
if (new_udp_fd < 0) { if (new_udp_fd < 0) {
@ -447,13 +382,11 @@ int address_t::new_connected_udp_fd()
return new_udp_fd; return new_udp_fd;
} }
void get_fake_random_chars(char * s,int len) void get_fake_random_chars(char *s, int len) {
{
char *p = s; char *p = s;
int left = len; int left = len;
while(left>=(int)sizeof(u64_t)) while (left >= (int)sizeof(u64_t)) {
{
//*((u64_t*)p)=my_random.gen64(); //this may break strict-alias , also p may not point to a multiple of sizeof(u64_t) //*((u64_t*)p)=my_random.gen64(); //this may break strict-alias , also p may not point to a multiple of sizeof(u64_t)
u64_t tmp = my_random.gen64(); u64_t tmp = my_random.gen64();
@ -462,22 +395,21 @@ void get_fake_random_chars(char * s,int len)
p += sizeof(u64_t); p += sizeof(u64_t);
left -= sizeof(u64_t); left -= sizeof(u64_t);
} }
if(left) if (left) {
{
u64_t tmp = my_random.gen64(); u64_t tmp = my_random.gen64();
memcpy(p, &tmp, left); memcpy(p, &tmp, left);
} }
} }
int random_between(u32_t a,u32_t b) int random_between(u32_t a, u32_t b) {
{ if (a > b) {
if(a>b)
{
mylog(log_fatal, "min >max?? %d %d\n", a, b); mylog(log_fatal, "min >max?? %d %d\n", a, b);
myexit(1); myexit(1);
} }
if(a==b)return a; if (a == b)
else return a+get_fake_random_number()%(b+1-a); return a;
else
return a + get_fake_random_number() % (b + 1 - a);
} }
/* /*
@ -495,8 +427,7 @@ u64_t get_current_time_us()
return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu; return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
}*/ }*/
u64_t get_current_time_us() u64_t get_current_time_us() {
{
static u64_t value_fix = 0; static u64_t value_fix = 0;
static u64_t largest_value = 0; static u64_t largest_value = 0;
@ -504,12 +435,9 @@ u64_t get_current_time_us()
u64_t fixed_value = raw_value + value_fix; u64_t fixed_value = raw_value + value_fix;
if(fixed_value< largest_value) if (fixed_value < largest_value) {
{
value_fix += largest_value - fixed_value; value_fix += largest_value - fixed_value;
} } else {
else
{
largest_value = fixed_value; largest_value = fixed_value;
} }
@ -517,49 +445,41 @@ u64_t get_current_time_us()
return raw_value + value_fix; // new fixed value return raw_value + value_fix; // new fixed value
} }
u64_t get_current_time() u64_t get_current_time() {
{
return get_current_time_us() / 1000lu; return get_current_time_us() / 1000lu;
} }
u64_t pack_u64(u32_t a,u32_t b) u64_t pack_u64(u32_t a, u32_t b) {
{
u64_t ret = a; u64_t ret = a;
ret <<= 32u; ret <<= 32u;
ret += b; ret += b;
return ret; return ret;
} }
u32_t get_u64_h(u64_t a) u32_t get_u64_h(u64_t a) {
{
return a >> 32u; return a >> 32u;
} }
u32_t get_u64_l(u64_t a) u32_t get_u64_l(u64_t a) {
{
return (a << 32u) >> 32u; return (a << 32u) >> 32u;
} }
void write_u16(char * p,u16_t w) void write_u16(char *p, u16_t w) {
{
*(unsigned char *)(p + 1) = (w & 0xff); *(unsigned char *)(p + 1) = (w & 0xff);
*(unsigned char *)(p + 0) = (w >> 8); *(unsigned char *)(p + 0) = (w >> 8);
} }
u16_t read_u16(char * p) u16_t read_u16(char *p) {
{
u16_t res; u16_t res;
res = *(const unsigned char *)(p + 0); res = *(const unsigned char *)(p + 0);
res = *(const unsigned char *)(p + 1) + (res << 8); res = *(const unsigned char *)(p + 1) + (res << 8);
return res; return res;
} }
void write_u32(char * p,u32_t l) void write_u32(char *p, u32_t l) {
{
*(unsigned char *)(p + 3) = (unsigned char)((l >> 0) & 0xff); *(unsigned char *)(p + 3) = (unsigned char)((l >> 0) & 0xff);
*(unsigned char *)(p + 2) = (unsigned char)((l >> 8) & 0xff); *(unsigned char *)(p + 2) = (unsigned char)((l >> 8) & 0xff);
*(unsigned char *)(p + 1) = (unsigned char)((l >> 16) & 0xff); *(unsigned char *)(p + 1) = (unsigned char)((l >> 16) & 0xff);
*(unsigned char *)(p + 0) = (unsigned char)((l >> 24) & 0xff); *(unsigned char *)(p + 0) = (unsigned char)((l >> 24) & 0xff);
} }
u32_t read_u32(char * p) u32_t read_u32(char *p) {
{
u32_t res; u32_t res;
res = *(const unsigned char *)(p + 0); res = *(const unsigned char *)(p + 0);
res = *(const unsigned char *)(p + 1) + (res << 8); res = *(const unsigned char *)(p + 1) + (res << 8);
@ -568,26 +488,21 @@ u32_t read_u32(char * p)
return res; return res;
} }
void write_u64(char * s,u64_t a) void write_u64(char *s, u64_t a) {
{
assert(0 == 1); assert(0 == 1);
} }
u64_t read_u64(char * s) u64_t read_u64(char *s) {
{
assert(0 == 1); assert(0 == 1);
return 0; return 0;
} }
char *my_ntoa(u32_t ip) {
char * my_ntoa(u32_t ip)
{
in_addr a; in_addr a;
a.s_addr = ip; a.s_addr = ip;
return inet_ntoa(a); return inet_ntoa(a);
} }
u64_t get_fake_random_number_64() u64_t get_fake_random_number_64() {
{
// u64_t ret; // u64_t ret;
// int size=read(random_fd.get_fd(),&ret,sizeof(ret)); // int size=read(random_fd.get_fd(),&ret,sizeof(ret));
// if(size!=sizeof(ret)) // if(size!=sizeof(ret))
@ -599,8 +514,7 @@ u64_t get_fake_random_number_64()
return my_random.gen64(); return my_random.gen64();
} }
u32_t get_fake_random_number() u32_t get_fake_random_number() {
{
// u32_t ret; // u32_t ret;
// int size=read(random_fd.get_fd(),&ret,sizeof(ret)); // int size=read(random_fd.get_fd(),&ret,sizeof(ret));
// if(size!=sizeof(ret)) // if(size!=sizeof(ret))
@ -613,8 +527,7 @@ u32_t get_fake_random_number()
u32_t get_fake_random_number_nz() // nz for non-zero u32_t get_fake_random_number_nz() // nz for non-zero
{ {
u32_t ret = 0; u32_t ret = 0;
while(ret==0) while (ret == 0) {
{
ret = get_fake_random_number(); ret = get_fake_random_number();
} }
return ret; return ret;
@ -692,7 +605,6 @@ unsigned short csum(const unsigned short *ptr,int nbytes) {
return (answer); return (answer);
} }
unsigned short tcp_csum(const pseudo_header &ph, const unsigned short *ptr, int nbytes) { // works both for big and little endian unsigned short tcp_csum(const pseudo_header &ph, const unsigned short *ptr, int nbytes) { // works both for big and little endian
long sum; long sum;
@ -701,12 +613,10 @@ unsigned short tcp_csum(const pseudo_header & ph,const unsigned short *ptr,int n
sum = 0; sum = 0;
unsigned short *tmp = (unsigned short *)&ph; unsigned short *tmp = (unsigned short *)&ph;
for(int i=0;i<6;i++) for (int i = 0; i < 6; i++) {
{
sum += *tmp++; sum += *tmp++;
} }
while (nbytes > 1) { while (nbytes > 1) {
sum += *ptr++; sum += *ptr++;
nbytes -= 2; nbytes -= 2;
@ -724,30 +634,25 @@ unsigned short tcp_csum(const pseudo_header & ph,const unsigned short *ptr,int n
return (answer); return (answer);
} }
int set_buf_size(int fd,int socket_buf_size) int set_buf_size(int fd, int socket_buf_size) {
{ if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) {
if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
{
mylog(log_fatal, "SO_SNDBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error()); mylog(log_fatal, "SO_SNDBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error());
myexit(1); myexit(1);
} }
if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0) if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) {
{
mylog(log_fatal, "SO_RCVBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error()); mylog(log_fatal, "SO_RCVBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error());
myexit(1); myexit(1);
} }
return 0; return 0;
} }
void myexit(int a) void myexit(int a) {
{
if (enable_log_color) if (enable_log_color)
printf("%s\n", RESET); printf("%s\n", RESET);
// clear_iptables_rule(); // clear_iptables_rule();
exit(a); exit(a);
} }
void signal_handler(int sig) void signal_handler(int sig) {
{
about_to_exit = 1; about_to_exit = 1;
// myexit(0); // myexit(0);
} }
@ -780,7 +685,6 @@ int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3)
} }
*/ */
/* /*
int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval) int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval)
{ {
@ -840,41 +744,32 @@ int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port)
return 0; return 0;
}*/ }*/
int round_up_div(int a,int b) int round_up_div(int a, int b) {
{
return (a + b - 1) / b; return (a + b - 1) / b;
} }
int create_fifo(char * file) int create_fifo(char *file) {
{
#if !defined(__MINGW32__) #if !defined(__MINGW32__)
if(mkfifo (file, 0666)!=0) if (mkfifo(file, 0666) != 0) {
{ if (errno == EEXIST) {
if(errno==EEXIST)
{
mylog(log_warn, "warning fifo file %s exist\n", file); mylog(log_warn, "warning fifo file %s exist\n", file);
} } else {
else
{
mylog(log_fatal, "create fifo file %s failed\n", file); mylog(log_fatal, "create fifo file %s failed\n", file);
myexit(-1); myexit(-1);
} }
} }
int fifo_fd = open(file, O_RDWR); int fifo_fd = open(file, O_RDWR);
if(fifo_fd<0) if (fifo_fd < 0) {
{
mylog(log_fatal, "create fifo file %s failed\n", file); mylog(log_fatal, "create fifo file %s failed\n", file);
myexit(-1); myexit(-1);
} }
struct stat st; struct stat st;
if (fstat(fifo_fd, &st)!=0) if (fstat(fifo_fd, &st) != 0) {
{
mylog(log_fatal, "fstat failed for fifo file %s\n", file); mylog(log_fatal, "fstat failed for fifo file %s\n", file);
myexit(-1); myexit(-1);
} }
if(!S_ISFIFO(st.st_mode)) if (!S_ISFIFO(st.st_mode)) {
{
mylog(log_fatal, "%s is not a fifo\n", file); mylog(log_fatal, "%s is not a fifo\n", file);
myexit(-1); myexit(-1);
} }
@ -946,8 +841,7 @@ int new_connected_socket(int &fd,u32_t ip,int port)
return 0; return 0;
} }
*/ */
int new_listen_socket2(int &fd,address_t &addr) int new_listen_socket2(int &fd, address_t &addr) {
{
fd = socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP); fd = socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP);
int yes = 1; int yes = 1;
@ -964,8 +858,7 @@ int new_listen_socket2(int &fd,address_t &addr)
return 0; return 0;
} }
int new_connected_socket2(int &fd,address_t &addr,address_t *bind_addr,char * interface_string) int new_connected_socket2(int &fd, address_t &addr, address_t *bind_addr, char *interface_string) {
{
fd = socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP); fd = socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP);
if (fd < 0) { if (fd < 0) {
mylog(log_warn, "[%s]create udp_fd error\n", addr.get_str()); mylog(log_warn, "[%s]create udp_fd error\n", addr.get_str());
@ -999,14 +892,11 @@ int new_connected_socket2(int &fd,address_t &addr,address_t *bind_addr,char * in
return 0; return 0;
} }
u32_t djb2(unsigned char *str, int len) {
u32_t djb2(unsigned char *str,int len)
{
u32_t hash = 5381; u32_t hash = 5381;
int c; int c;
int i = 0; int i = 0;
while(c = *str++,i++!=len) while (c = *str++, i++ != len) {
{
hash = ((hash << 5) + hash) ^ c; /* (hash * 33) ^ c */ hash = ((hash << 5) + hash) ^ c; /* (hash * 33) ^ c */
} }
@ -1014,13 +904,11 @@ u32_t djb2(unsigned char *str,int len)
return hash; return hash;
} }
u32_t sdbm(unsigned char *str,int len) u32_t sdbm(unsigned char *str, int len) {
{
u32_t hash = 0; u32_t hash = 0;
int c; int c;
int i = 0; int i = 0;
while(c = *str++,i++!=len) while (c = *str++, i++ != len) {
{
hash = c + (hash << 6) + (hash << 16) - hash; hash = c + (hash << 6) + (hash << 16) - hash;
} }
// hash=htonl(hash); // hash=htonl(hash);
@ -1031,8 +919,7 @@ vector<string> string_to_vec(const char * s,const char * sp) {
vector<string> res; vector<string> res;
string str = s; string str = s;
char *p = strtok((char *)str.c_str(), sp); char *p = strtok((char *)str.c_str(), sp);
while (p != NULL) while (p != NULL) {
{
res.push_back(p); res.push_back(p);
// printf ("%s\n",p); // printf ("%s\n",p);
p = strtok(NULL, sp); p = strtok(NULL, sp);
@ -1044,4 +931,3 @@ vector<string> string_to_vec(const char * s,const char * sp) {
}*/ }*/
return res; return res;
} }

169
common.h
View File

@ -51,7 +51,6 @@ typedef int socklen_t;
#include <netinet/in.h> #include <netinet/in.h>
#endif #endif
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include <map> #include <map>
@ -60,7 +59,6 @@ typedef int socklen_t;
#include <vector> #include <vector>
using namespace std; using namespace std;
typedef unsigned long long u64_t; // this works on most platform,avoid using the PRId64 typedef unsigned long long u64_t; // this works on most platform,avoid using the PRId64
typedef long long i64_t; typedef long long i64_t;
@ -70,7 +68,6 @@ typedef int i32_t;
typedef unsigned short u16_t; typedef unsigned short u16_t;
typedef short i16_t; typedef short i16_t;
#if defined(__MINGW32__) #if defined(__MINGW32__)
int inet_pton(int af, const char *src, void *dst); int inet_pton(int af, const char *src, void *dst);
const char *inet_ntop(int af, const void *src, char *dst, socklen_t size); const char *inet_ntop(int af, const void *src, char *dst, socklen_t size);
@ -83,20 +80,17 @@ int init_ws();
#if defined(__MINGW32__) #if defined(__MINGW32__)
typedef SOCKET my_fd_t; typedef SOCKET my_fd_t;
inline int sock_close(my_fd_t fd) inline int sock_close(my_fd_t fd) {
{
return closesocket(fd); return closesocket(fd);
} }
#else #else
typedef int my_fd_t; typedef int my_fd_t;
inline int sock_close(my_fd_t fd) inline int sock_close(my_fd_t fd) {
{
return close(fd); return close(fd);
} }
#endif #endif
struct my_itimerspec { struct my_itimerspec {
struct timespec it_interval; /* Timer interval */ struct timespec it_interval; /* Timer interval */
struct timespec it_value; /* Initial expiration */ struct timespec it_value; /* Initial expiration */
@ -136,7 +130,6 @@ const int conn_clear_min=1;
const u32_t conv_clear_interval = 1000; const u32_t conv_clear_interval = 1000;
const u32_t conn_clear_interval = 1000; const u32_t conn_clear_interval = 1000;
const i32_t max_fail_time = 0; // disable const i32_t max_fail_time = 0; // disable
const u32_t heartbeat_interval = 1000; const u32_t heartbeat_interval = 1000;
@ -152,21 +145,26 @@ const u32_t client_conn_uplink_timeout=client_conn_timeout+2000;
// const uint32_t server_conn_timeout=conv_timeout+60000;//this should be 60s+ longer than conv_timeout,so that conv_manager can destruct convs gradually,to avoid latency glicth // const uint32_t server_conn_timeout=conv_timeout+60000;//this should be 60s+ longer than conv_timeout,so that conv_manager can destruct convs gradually,to avoid latency glicth
const u32_t server_conn_timeout = conv_timeout + 20000; // for test const u32_t server_conn_timeout = conv_timeout + 20000; // for test
extern int about_to_exit; extern int about_to_exit;
enum raw_mode_t{mode_faketcp=0,mode_udp,mode_icmp,mode_end}; enum raw_mode_t { mode_faketcp = 0,
mode_udp,
mode_icmp,
mode_end };
extern raw_mode_t raw_mode; extern raw_mode_t raw_mode;
enum program_mode_t {unset_mode=0,client_mode,server_mode}; enum program_mode_t { unset_mode = 0,
client_mode,
server_mode };
extern program_mode_t program_mode; extern program_mode_t program_mode;
extern unordered_map<int, const char *> raw_mode_tostring; extern unordered_map<int, const char *> raw_mode_tostring;
enum working_mode_t {unset_working_mode=0,tunnel_mode,tun_dev_mode}; enum working_mode_t { unset_working_mode = 0,
tunnel_mode,
tun_dev_mode };
extern working_mode_t working_mode; extern working_mode_t working_mode;
extern int socket_buf_size; extern int socket_buf_size;
// typedef u32_t id_t; // typedef u32_t id_t;
typedef u64_t iv_t; typedef u64_t iv_t;
@ -178,7 +176,12 @@ typedef u64_t anti_replay_seq_t;
typedef u64_t fd64_t; typedef u64_t fd64_t;
// enum dest_type{none=0,type_fd64_ip_port,type_fd64,type_fd64_ip_port_conv,type_fd64_conv/*,type_fd*/}; // enum dest_type{none=0,type_fd64_ip_port,type_fd64,type_fd64_ip_port_conv,type_fd64_conv/*,type_fd*/};
enum dest_type{none=0,type_fd64_addr,type_fd64,type_fd,type_write_fd,type_fd_addr/*,type_fd*/}; enum dest_type { none = 0,
type_fd64_addr,
type_fd64,
type_fd,
type_write_fd,
type_fd_addr /*,type_fd*/ };
/* /*
struct ip_port_t struct ip_port_t
@ -201,7 +204,6 @@ struct fd_ip_port_t
ip_port_t ip_port; ip_port_t ip_port;
};*/ };*/
struct pseudo_header { struct pseudo_header {
u32_t source_address; u32_t source_address;
u32_t dest_address; u32_t dest_address;
@ -215,10 +217,8 @@ u32_t sdbm(unsigned char *str,int len);
struct address_t // TODO scope id struct address_t // TODO scope id
{ {
struct hash_function struct hash_function {
{ u32_t operator()(const address_t &key) const {
u32_t operator()(const address_t &key) const
{
return sdbm((unsigned char *)&key.inner, sizeof(key.inner)); return sdbm((unsigned char *)&key.inner, sizeof(key.inner));
} }
}; };
@ -234,8 +234,7 @@ struct address_t //TODO scope id
{ {
clear(); clear();
}*/ }*/
void clear() void clear() {
{
memset(&inner, 0, sizeof(inner)); memset(&inner, 0, sizeof(inner));
} }
/* /*
@ -248,17 +247,13 @@ struct address_t //TODO scope id
return 0; return 0;
}*/ }*/
int from_ip_port_new(int type, void * ip, int port) int from_ip_port_new(int type, void *ip, int port) {
{
clear(); clear();
if(type==AF_INET) if (type == AF_INET) {
{
inner.ipv4.sin_family = AF_INET; inner.ipv4.sin_family = AF_INET;
inner.ipv4.sin_port = htons(port); inner.ipv4.sin_port = htons(port);
inner.ipv4.sin_addr.s_addr = *((u32_t *)ip); inner.ipv4.sin_addr.s_addr = *((u32_t *)ip);
} } else if (type == AF_INET6) {
else if(type==AF_INET6)
{
inner.ipv6.sin6_family = AF_INET6; inner.ipv6.sin6_family = AF_INET6;
inner.ipv6.sin6_port = htons(port); inner.ipv6.sin6_port = htons(port);
inner.ipv6.sin6_addr = *((in6_addr *)ip); inner.ipv6.sin6_addr = *((in6_addr *)ip);
@ -275,24 +270,20 @@ struct address_t //TODO scope id
char *get_str(); char *get_str();
void to_str(char *); void to_str(char *);
inline int is_vaild() inline int is_vaild() {
{
u32_t ret = ((sockaddr *)&inner)->sa_family; u32_t ret = ((sockaddr *)&inner)->sa_family;
return (ret == AF_INET || ret == AF_INET6); return (ret == AF_INET || ret == AF_INET6);
} }
inline u32_t get_type() inline u32_t get_type() {
{
assert(is_vaild()); assert(is_vaild());
u32_t ret = ((sockaddr *)&inner)->sa_family; u32_t ret = ((sockaddr *)&inner)->sa_family;
return ret; return ret;
} }
inline u32_t get_len() inline u32_t get_len() {
{
u32_t type = get_type(); u32_t type = get_type();
switch(type) switch (type) {
{
case AF_INET: case AF_INET:
return sizeof(sockaddr_in); return sizeof(sockaddr_in);
case AF_INET6: case AF_INET6:
@ -303,11 +294,9 @@ struct address_t //TODO scope id
return -1; return -1;
} }
inline u32_t get_port() inline u32_t get_port() {
{
u32_t type = get_type(); u32_t type = get_type();
switch(type) switch (type) {
{
case AF_INET: case AF_INET:
return ntohs(inner.ipv4.sin_port); return ntohs(inner.ipv4.sin_port);
case AF_INET6: case AF_INET6:
@ -318,11 +307,9 @@ struct address_t //TODO scope id
return -1; return -1;
} }
inline void set_port(int port) inline void set_port(int port) {
{
u32_t type = get_type(); u32_t type = get_type();
switch(type) switch (type) {
{
case AF_INET: case AF_INET:
inner.ipv4.sin_port = htons(port); inner.ipv4.sin_port = htons(port);
break; break;
@ -335,8 +322,7 @@ struct address_t //TODO scope id
return; return;
} }
bool operator == (const address_t &b) const bool operator==(const address_t &b) const {
{
// return this->data==b.data; // return this->data==b.data;
return memcmp(&this->inner, &b.inner, sizeof(this->inner)) == 0; return memcmp(&this->inner, &b.inner, sizeof(this->inner)) == 0;
} }
@ -348,44 +334,36 @@ struct address_t //TODO scope id
namespace std { namespace std {
template <> template <>
struct hash<address_t> struct hash<address_t> {
{ std::size_t operator()(const address_t &key) const {
std::size_t operator()(const address_t& key) const
{
// return address_t::hash_function(k); // return address_t::hash_function(k);
return sdbm((unsigned char *)&key.inner, sizeof(key.inner)); return sdbm((unsigned char *)&key.inner, sizeof(key.inner));
} }
}; };
} } // namespace std
struct fd64_addr_t struct fd64_addr_t {
{
fd64_t fd64; fd64_t fd64;
address_t addr; address_t addr;
}; };
struct fd_addr_t struct fd_addr_t {
{
int fd; int fd;
address_t addr; address_t addr;
}; };
union inner_t union inner_t {
{
fd64_t fd64; fd64_t fd64;
int fd; int fd;
fd64_addr_t fd64_addr; fd64_addr_t fd64_addr;
fd_addr_t fd_addr; fd_addr_t fd_addr;
}; };
struct dest_t struct dest_t {
{
dest_type type; dest_type type;
inner_t inner; inner_t inner;
u32_t conv; u32_t conv;
int cook = 0; int cook = 0;
}; };
struct fd_info_t struct fd_info_t {
{
address_t addr; address_t addr;
ev_io io_watcher; ev_io io_watcher;
}; };
@ -453,31 +431,23 @@ int new_connected_socket(int &fd,u32_t ip,int port);
int new_listen_socket2(int &fd, address_t &addr); int new_listen_socket2(int &fd, address_t &addr);
int new_connected_socket2(int &fd, address_t &addr, address_t *bind_addr, char *out_interface); int new_connected_socket2(int &fd, address_t &addr, address_t *bind_addr, char *out_interface);
struct not_copy_able_t struct not_copy_able_t {
{ not_copy_able_t() {
not_copy_able_t()
{
} }
not_copy_able_t(const not_copy_able_t &other) not_copy_able_t(const not_copy_able_t &other) {
{
assert(0 == 1); assert(0 == 1);
} }
const not_copy_able_t & operator=(const not_copy_able_t &other) const not_copy_able_t &operator=(const not_copy_able_t &other) {
{
assert(0 == 1); assert(0 == 1);
return other; return other;
} }
}; };
template <class key_t> template <class key_t>
struct lru_collector_t:not_copy_able_t struct lru_collector_t : not_copy_able_t {
{
// typedef void* key_t; // typedef void* key_t;
//#define key_t void* //#define key_t void*
struct lru_pair_t struct lru_pair_t {
{
key_t key; key_t key;
my_time_t ts; my_time_t ts;
}; };
@ -485,65 +455,61 @@ struct lru_collector_t:not_copy_able_t
unordered_map<key_t, typename list<lru_pair_t>::iterator> mp; unordered_map<key_t, typename list<lru_pair_t>::iterator> mp;
list<lru_pair_t> q; list<lru_pair_t> q;
int update(key_t key) int update(key_t key) {
{
assert(mp.find(key) != mp.end()); assert(mp.find(key) != mp.end());
auto it = mp[key]; auto it = mp[key];
q.erase(it); q.erase(it);
my_time_t value = get_current_time(); my_time_t value = get_current_time();
if(!q.empty()) if (!q.empty()) {
{
assert(value >= q.front().ts); assert(value >= q.front().ts);
} }
lru_pair_t tmp; tmp.key=key; tmp.ts=value; lru_pair_t tmp;
tmp.key = key;
tmp.ts = value;
q.push_front(tmp); q.push_front(tmp);
mp[key] = q.begin(); mp[key] = q.begin();
return 0; return 0;
} }
int new_key(key_t key) int new_key(key_t key) {
{
assert(mp.find(key) == mp.end()); assert(mp.find(key) == mp.end());
my_time_t value = get_current_time(); my_time_t value = get_current_time();
if(!q.empty()) if (!q.empty()) {
{
assert(value >= q.front().ts); assert(value >= q.front().ts);
} }
lru_pair_t tmp; tmp.key=key; tmp.ts=value; lru_pair_t tmp;
tmp.key = key;
tmp.ts = value;
q.push_front(tmp); q.push_front(tmp);
mp[key] = q.begin(); mp[key] = q.begin();
return 0; return 0;
} }
int size() int size() {
{
return q.size(); return q.size();
} }
int empty() int empty() {
{
return q.empty(); return q.empty();
} }
void clear() void clear() {
{ mp.clear();
mp.clear(); q.clear(); q.clear();
} }
my_time_t ts_of(key_t key) my_time_t ts_of(key_t key) {
{
assert(mp.find(key) != mp.end()); assert(mp.find(key) != mp.end());
return mp[key]->ts; return mp[key]->ts;
} }
my_time_t peek_back(key_t &key) my_time_t peek_back(key_t &key) {
{
assert(!q.empty()); assert(!q.empty());
auto it=q.end(); it--; auto it = q.end();
it--;
key = it->key; key = it->key;
return it->ts; return it->ts;
} }
void erase(key_t key) void erase(key_t key) {
{
assert(mp.find(key) != mp.end()); assert(mp.find(key) != mp.end());
q.erase(mp[key]); q.erase(mp[key]);
mp.erase(key); mp.erase(key);
@ -558,7 +524,6 @@ struct lru_collector_t:not_copy_able_t
}*/ }*/
}; };
vector<string> string_to_vec(const char *s, const char *sp); vector<string> string_to_vec(const char *s, const char *sp);
#endif /* COMMON_H_ */ #endif /* COMMON_H_ */

View File

@ -27,22 +27,16 @@ void server_clear_function(u64_t u64)//used in conv_manager in server mode.for s
ev_io_stop(loop, &watcher); ev_io_stop(loop, &watcher);
fd_manager.fd64_close(fd64); fd_manager.fd64_close(fd64);
} }
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
conn_manager_t::conn_manager_t() conn_manager_t::conn_manager_t() {
{
mp.reserve(10007); mp.reserve(10007);
last_clear_time = 0; last_clear_time = 0;
} }
int conn_manager_t::exist(address_t addr) int conn_manager_t::exist(address_t addr) {
{ if (mp.find(addr) != mp.end()) {
if(mp.find(addr)!=mp.end())
{
return 1; return 1;
} }
return 0; return 0;
@ -55,13 +49,10 @@ conn_info_t *& conn_manager_t::find_insert_p(address_t addr) //be aware,the adr
// u64<<=32u; // u64<<=32u;
// u64|=port; // u64|=port;
unordered_map<address_t, conn_info_t *>::iterator it = mp.find(addr); unordered_map<address_t, conn_info_t *>::iterator it = mp.find(addr);
if(it==mp.end()) if (it == mp.end()) {
{
mp[addr] = new conn_info_t; mp[addr] = new conn_info_t;
// lru.new_key(addr); // lru.new_key(addr);
} } else {
else
{
// lru.update(addr); // lru.update(addr);
} }
return mp[addr]; return mp[addr];
@ -73,35 +64,28 @@ conn_info_t & conn_manager_t::find_insert(address_t addr) //be aware,the adress
// u64<<=32u; // u64<<=32u;
// u64|=port; // u64|=port;
unordered_map<address_t, conn_info_t *>::iterator it = mp.find(addr); unordered_map<address_t, conn_info_t *>::iterator it = mp.find(addr);
if(it==mp.end()) if (it == mp.end()) {
{
mp[addr] = new conn_info_t; mp[addr] = new conn_info_t;
// lru.new_key(addr); // lru.new_key(addr);
} } else {
else
{
// lru.update(addr); // lru.update(addr);
} }
return *mp[addr]; return *mp[addr];
} }
int conn_manager_t::erase(unordered_map<address_t,conn_info_t*>::iterator erase_it) int conn_manager_t::erase(unordered_map<address_t, conn_info_t *>::iterator erase_it) {
{
delete (erase_it->second); delete (erase_it->second);
mp.erase(erase_it->first); mp.erase(erase_it->first);
return 0; return 0;
} }
int conn_manager_t::clear_inactive() int conn_manager_t::clear_inactive() {
{ if (get_current_time() - last_clear_time > conn_clear_interval) {
if(get_current_time()-last_clear_time>conn_clear_interval)
{
last_clear_time = get_current_time(); last_clear_time = get_current_time();
return clear_inactive0(); return clear_inactive0();
} }
return 0; return 0;
} }
int conn_manager_t::clear_inactive0() int conn_manager_t::clear_inactive0() {
{
// mylog(log_info,"called\n"); // mylog(log_info,"called\n");
unordered_map<address_t, conn_info_t *>::iterator it; unordered_map<address_t, conn_info_t *>::iterator it;
unordered_map<address_t, conn_info_t *>::iterator old_it; unordered_map<address_t, conn_info_t *>::iterator old_it;
@ -120,26 +104,19 @@ int conn_manager_t::clear_inactive0()
u64_t current_time = get_current_time(); u64_t current_time = get_current_time();
// mylog(log_info,"here size=%d\n",(int)mp.size()); // mylog(log_info,"here size=%d\n",(int)mp.size());
for(;;) for (;;) {
{
if (cnt >= num_to_clean) break; if (cnt >= num_to_clean) break;
if (mp.begin() == mp.end()) break; if (mp.begin() == mp.end()) break;
if(it==mp.end()) if (it == mp.end()) {
{
it = mp.begin(); it = mp.begin();
} }
if(it->second->conv_manager.s.get_size() >0) if (it->second->conv_manager.s.get_size() > 0) {
{
// mylog(log_info,"[%s:%d]size %d \n",my_ntoa(get_u64_h(it->first)),get_u64_l(it->first),(int)it->second->conv_manager.get_size()); // mylog(log_info,"[%s:%d]size %d \n",my_ntoa(get_u64_h(it->first)),get_u64_l(it->first),(int)it->second->conv_manager.get_size());
it++; it++;
} } else if (current_time < it->second->last_active_time + server_conn_timeout) {
else if(current_time<it->second->last_active_time+server_conn_timeout)
{
it++; it++;
} } else {
else
{
address_t tmp_addr = it->first; // avoid making get_str() const; address_t tmp_addr = it->first; // avoid making get_str() const;
mylog(log_info, "{%s} inactive conn cleared \n", tmp_addr.get_str()); mylog(log_info, "{%s} inactive conn cleared \n", tmp_addr.get_str());
old_it = it; old_it = it;

View File

@ -39,36 +39,29 @@ struct conv_manager_t // manage the udp connections
long long last_clear_time; long long last_clear_time;
conv_manager_t() conv_manager_t() {
{
// clear_it=conv_last_active_time.begin(); // clear_it=conv_last_active_time.begin();
long long last_clear_time = 0; long long last_clear_time = 0;
additional_clear_function = 0; additional_clear_function = 0;
} }
~conv_manager_t() ~conv_manager_t() {
{
clear(); clear();
} }
int get_size() int get_size() {
{
return conv_to_data.size(); return conv_to_data.size();
} }
void reserve() void reserve() {
{
data_to_conv.reserve(10007); data_to_conv.reserve(10007);
conv_to_data.reserve(10007); conv_to_data.reserve(10007);
// conv_last_active_time.reserve(10007); // conv_last_active_time.reserve(10007);
lru.mp.reserve(10007); lru.mp.reserve(10007);
} }
void clear() void clear() {
{
if (disable_conv_clear) return; if (disable_conv_clear) return;
if(additional_clear_function!=0) if (additional_clear_function != 0) {
{ for (auto it = conv_to_data.begin(); it != conv_to_data.end(); it++) {
for(auto it=conv_to_data.begin();it!=conv_to_data.end();it++)
{
// int fd=int((it->second<<32u)>>32u); // int fd=int((it->second<<32u)>>32u);
additional_clear_function(it->second); additional_clear_function(it->second);
} }
@ -80,53 +73,42 @@ struct conv_manager_t // manage the udp connections
// conv_last_active_time.clear(); // conv_last_active_time.clear();
// clear_it=conv_last_active_time.begin(); // clear_it=conv_last_active_time.begin();
} }
u32_t get_new_conv() u32_t get_new_conv() {
{
u32_t conv = get_fake_random_number_nz(); u32_t conv = get_fake_random_number_nz();
while(conv_to_data.find(conv)!=conv_to_data.end()) while (conv_to_data.find(conv) != conv_to_data.end()) {
{
conv = get_fake_random_number_nz(); conv = get_fake_random_number_nz();
} }
return conv; return conv;
} }
int is_conv_used(u32_t conv) int is_conv_used(u32_t conv) {
{
return conv_to_data.find(conv) != conv_to_data.end(); return conv_to_data.find(conv) != conv_to_data.end();
} }
int is_data_used(T data) int is_data_used(T data) {
{
return data_to_conv.find(data) != data_to_conv.end(); return data_to_conv.find(data) != data_to_conv.end();
} }
u32_t find_conv_by_data(T data) u32_t find_conv_by_data(T data) {
{
return data_to_conv[data]; return data_to_conv[data];
} }
T find_data_by_conv(u32_t conv) T find_data_by_conv(u32_t conv) {
{
return conv_to_data[conv]; return conv_to_data[conv];
} }
int update_active_time(u32_t conv) int update_active_time(u32_t conv) {
{
// return conv_last_active_time[conv]=get_current_time(); // return conv_last_active_time[conv]=get_current_time();
lru.update(conv); lru.update(conv);
return 0; return 0;
} }
int insert_conv(u32_t conv,T data) int insert_conv(u32_t conv, T data) {
{
data_to_conv[data] = conv; data_to_conv[data] = conv;
conv_to_data[conv] = data; conv_to_data[conv] = data;
// conv_last_active_time[conv]=get_current_time(); // conv_last_active_time[conv]=get_current_time();
lru.new_key(conv); lru.new_key(conv);
return 0; return 0;
} }
int erase_conv(u32_t conv) int erase_conv(u32_t conv) {
{
if (disable_conv_clear) return 0; if (disable_conv_clear) return 0;
T data = conv_to_data[conv]; T data = conv_to_data[conv];
if(additional_clear_function!=0) if (additional_clear_function != 0) {
{
additional_clear_function(data); additional_clear_function(data);
} }
conv_to_data.erase(conv); conv_to_data.erase(conv);
@ -135,20 +117,16 @@ struct conv_manager_t // manage the udp connections
lru.erase(conv); lru.erase(conv);
return 0; return 0;
} }
int clear_inactive(char * info=0) int clear_inactive(char *info = 0) {
{ if (get_current_time() - last_clear_time > conv_clear_interval) {
if(get_current_time()-last_clear_time>conv_clear_interval)
{
last_clear_time = get_current_time(); last_clear_time = get_current_time();
return clear_inactive0(info); return clear_inactive0(info);
} }
return 0; return 0;
} }
int clear_inactive0(char * info) int clear_inactive0(char *info) {
{
if (disable_conv_clear) return 0; if (disable_conv_clear) return 0;
unordered_map<u32_t, u64_t>::iterator it; unordered_map<u32_t, u64_t>::iterator it;
unordered_map<u32_t, u64_t>::iterator old_it; unordered_map<u32_t, u64_t>::iterator old_it;
@ -161,8 +139,7 @@ struct conv_manager_t // manage the udp connections
num_to_clean = min(num_to_clean, size); num_to_clean = min(num_to_clean, size);
my_time_t current_time = get_current_time(); my_time_t current_time = get_current_time();
for(;;) for (;;) {
{
if (cnt >= num_to_clean) break; if (cnt >= num_to_clean) break;
if (lru.empty()) break; if (lru.empty()) break;
@ -172,12 +149,9 @@ struct conv_manager_t // manage the udp connections
if (current_time - ts < conv_timeout) break; if (current_time - ts < conv_timeout) break;
erase_conv(conv); erase_conv(conv);
if(info==0) if (info == 0) {
{
mylog(log_info, "conv %x cleared\n", conv); mylog(log_info, "conv %x cleared\n", conv);
} } else {
else
{
mylog(log_info, "[%s]conv %x cleared\n", info, conv); mylog(log_info, "[%s]conv %x cleared\n", info, conv);
} }
cnt++; cnt++;
@ -185,7 +159,6 @@ struct conv_manager_t // manage the udp connections
return 0; return 0;
} }
/* /*
conv_manager_t(); conv_manager_t();
~conv_manager_t(); ~conv_manager_t();
@ -204,89 +177,67 @@ struct conv_manager_t // manage the udp connections
int clear_inactive0(char * ip_port);*/ int clear_inactive0(char * ip_port);*/
}; // g_conv_manager; }; // g_conv_manager;
struct inner_stat_t {
struct inner_stat_t
{
u64_t input_packet_num; u64_t input_packet_num;
u64_t input_packet_size; u64_t input_packet_size;
u64_t output_packet_num; u64_t output_packet_num;
u64_t output_packet_size; u64_t output_packet_size;
}; };
struct stat_t struct stat_t {
{
u64_t last_report_time; u64_t last_report_time;
inner_stat_t normal_to_fec; inner_stat_t normal_to_fec;
inner_stat_t fec_to_normal; inner_stat_t fec_to_normal;
stat_t() stat_t() {
{
memset(this, 0, sizeof(stat_t)); memset(this, 0, sizeof(stat_t));
} }
void report_as_client() void report_as_client() {
{ if (report_interval != 0 && get_current_time() - last_report_time > u64_t(report_interval) * 1000) {
if(report_interval!=0 &&get_current_time()-last_report_time>u64_t(report_interval)*1000)
{
last_report_time = get_current_time(); last_report_time = get_current_time();
inner_stat_t &a = normal_to_fec; inner_stat_t &a = normal_to_fec;
inner_stat_t &b = fec_to_normal; inner_stat_t &b = fec_to_normal;
mylog(log_info, "[report]client-->server:(original:%llu pkt;%llu byte) (fec:%llu pkt,%llu byte) server-->client:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte)\n", mylog(log_info, "[report]client-->server:(original:%llu pkt;%llu byte) (fec:%llu pkt,%llu byte) server-->client:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte)\n",
a.input_packet_num, a.input_packet_size, a.output_packet_num, a.output_packet_size, a.input_packet_num, a.input_packet_size, a.output_packet_num, a.output_packet_size,
b.output_packet_num,b.output_packet_size,b.input_packet_num,b.input_packet_size b.output_packet_num, b.output_packet_size, b.input_packet_num, b.input_packet_size);
);
} }
} }
void report_as_server(address_t &addr) void report_as_server(address_t &addr) {
{ if (report_interval != 0 && get_current_time() - last_report_time > u64_t(report_interval) * 1000) {
if(report_interval!=0 &&get_current_time()-last_report_time>u64_t(report_interval)*1000)
{
last_report_time = get_current_time(); last_report_time = get_current_time();
inner_stat_t &a = fec_to_normal; inner_stat_t &a = fec_to_normal;
inner_stat_t &b = normal_to_fec; inner_stat_t &b = normal_to_fec;
mylog(log_info, "[report][%s]client-->server:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte) server-->client:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte)\n", mylog(log_info, "[report][%s]client-->server:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte) server-->client:(original:%llu pkt;%llu byte) (fec:%llu pkt;%llu byte)\n",
addr.get_str(), addr.get_str(),
a.output_packet_num, a.output_packet_size, a.input_packet_num, a.input_packet_size, a.output_packet_num, a.output_packet_size, a.input_packet_num, a.input_packet_size,
b.input_packet_num,b.input_packet_size,b.output_packet_num,b.output_packet_size b.input_packet_num, b.input_packet_size, b.output_packet_num, b.output_packet_size);
);
} }
} }
}; };
struct conn_info_t : not_copy_able_t // stores info for a raw connection.for client ,there is only one connection,for server there can be thousand of connection since server can struct conn_info_t : not_copy_able_t // stores info for a raw connection.for client ,there is only one connection,for server there can be thousand of connection since server can
// handle multiple clients // handle multiple clients
{ {
union tmp_union_t union tmp_union_t {
{
conv_manager_t<address_t> c; conv_manager_t<address_t> c;
conv_manager_t<u64_t> s; conv_manager_t<u64_t> s;
// avoid templates here and there, avoid pointer and type cast // avoid templates here and there, avoid pointer and type cast
tmp_union_t() tmp_union_t() {
{ if (program_mode == client_mode) {
if(program_mode==client_mode)
{
new (&c) conv_manager_t<address_t>(); new (&c) conv_manager_t<address_t>();
} } else {
else
{
assert(program_mode == server_mode); assert(program_mode == server_mode);
new (&s) conv_manager_t<u64_t>(); new (&s) conv_manager_t<u64_t>();
} }
} }
~tmp_union_t() ~tmp_union_t() {
{ if (program_mode == client_mode) {
if(program_mode==client_mode)
{
c.~conv_manager_t<address_t>(); c.~conv_manager_t<address_t>();
} } else {
else
{
assert(program_mode == server_mode); assert(program_mode == server_mode);
s.~conv_manager_t<u64_t>(); s.~conv_manager_t<u64_t>();
} }
} }
} conv_manager; } conv_manager;
fec_encode_manager_t fec_encode_manager; fec_encode_manager_t fec_encode_manager;
fec_decode_manager_t fec_decode_manager; fec_decode_manager_t fec_decode_manager;
ev_timer timer; ev_timer timer;
@ -304,25 +255,19 @@ struct conn_info_t:not_copy_able_t //stores info for a raw connection.for cl
// ip_port_t ip_port; // ip_port_t ip_port;
address_t addr; // only used for server address_t addr; // only used for server
conn_info_t() conn_info_t() {
{ if (program_mode == server_mode) {
if(program_mode==server_mode)
{
conv_manager.s.additional_clear_function = server_clear_function; conv_manager.s.additional_clear_function = server_clear_function;
} } else {
else
{
assert(program_mode == client_mode); assert(program_mode == client_mode);
} }
} }
~conn_info_t() ~conn_info_t() {
{
if (loop) if (loop)
ev_timer_stop(loop, &timer); ev_timer_stop(loop, &timer);
} }
void update_active_time() void update_active_time() {
{
last_active_time = get_current_time(); last_active_time = get_current_time();
} }
/* /*
@ -357,8 +302,6 @@ struct conn_manager_t //manager for connections. for client,we dont need conn_m
struct conn_manager_t // manager for connections. for client,we dont need conn_manager since there is only one connection.for server we use one conn_manager for all connections struct conn_manager_t // manager for connections. for client,we dont need conn_manager since there is only one connection.for server we use one conn_manager for all connections
{ {
unordered_map<address_t, conn_info_t *> mp; // put it at end so that it de-consturcts first unordered_map<address_t, conn_info_t *> mp; // put it at end so that it de-consturcts first
unordered_map<address_t, conn_info_t *>::iterator clear_it; unordered_map<address_t, conn_info_t *>::iterator clear_it;
@ -372,12 +315,8 @@ struct conn_manager_t //manager for connections. for client,we dont need conn_m
int erase(unordered_map<address_t, conn_info_t *>::iterator erase_it); int erase(unordered_map<address_t, conn_info_t *>::iterator erase_it);
int clear_inactive(); int clear_inactive();
int clear_inactive0(); int clear_inactive0();
}; };
extern conn_manager_t conn_manager; extern conn_manager_t conn_manager;
#endif /* CONNECTION_H_ */ #endif /* CONNECTION_H_ */

View File

@ -8,14 +8,11 @@
#include "log.h" #include "log.h"
#include "packet.h" #include "packet.h"
int delay_data_t::handle() int delay_data_t::handle() {
{
return my_send(dest, data, len) >= 0; return my_send(dest, data, len) >= 0;
} }
delay_manager_t::delay_manager_t() {
delay_manager_t::delay_manager_t()
{
capacity = 0; capacity = 0;
// if ((timer_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK)) < 0) // if ((timer_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK)) < 0)
@ -28,10 +25,8 @@ delay_manager_t::delay_manager_t()
// memset(&zero_its, 0, sizeof(zero_its)); // memset(&zero_its, 0, sizeof(zero_its));
// timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0); // timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0);
} }
delay_manager_t::~delay_manager_t() delay_manager_t::~delay_manager_t() {
{
// TODO ,we currently dont need to deconstruct it // TODO ,we currently dont need to deconstruct it
} }
@ -42,20 +37,17 @@ int delay_manager_t::get_timer_fd()
}*/ }*/
// int add(my_time_t delay,const dest_t &dest,const char *data,int len); // int add(my_time_t delay,const dest_t &dest,const char *data,int len);
int delay_manager_t::add(my_time_t delay,const dest_t &dest,char *data,int len) int delay_manager_t::add(my_time_t delay, const dest_t &dest, char *data, int len) {
{
delay_data_t delay_data; delay_data_t delay_data;
delay_data.dest = dest; delay_data.dest = dest;
// delay_data.data=data; // delay_data.data=data;
delay_data.len = len; delay_data.len = len;
if(capacity!=0&&int(delay_mp.size()) >=capacity) if (capacity != 0 && int(delay_mp.size()) >= capacity) {
{
mylog(log_warn, "max pending packet reached,ignored\n"); mylog(log_warn, "max pending packet reached,ignored\n");
return -1; return -1;
} }
if(delay==0) if (delay == 0) {
{
static char buf[buf_len]; static char buf[buf_len];
delay_data.data = buf; delay_data.data = buf;
memcpy(buf, data, len); memcpy(buf, data, len);
@ -68,8 +60,7 @@ int delay_manager_t::add(my_time_t delay,const dest_t &dest,char *data,int len)
delay_data_t tmp = delay_data; delay_data_t tmp = delay_data;
tmp.data = (char *)malloc(delay_data.len + 100); tmp.data = (char *)malloc(delay_data.len + 100);
if(!tmp.data) if (!tmp.data) {
{
mylog(log_warn, "malloc() returned null in delay_manager_t::add()"); mylog(log_warn, "malloc() returned null in delay_manager_t::add()");
return -1; return -1;
} }
@ -85,46 +76,36 @@ int delay_manager_t::add(my_time_t delay,const dest_t &dest,char *data,int len)
return 0; return 0;
} }
int delay_manager_t::check() int delay_manager_t::check() {
{ if (!delay_mp.empty()) {
if(!delay_mp.empty())
{
my_time_t current_time; my_time_t current_time;
multimap<my_time_t, delay_data_t>::iterator it; multimap<my_time_t, delay_data_t>::iterator it;
while(1) while (1) {
{
int ret = 0; int ret = 0;
it = delay_mp.begin(); it = delay_mp.begin();
if (it == delay_mp.end()) break; if (it == delay_mp.end()) break;
current_time = get_current_time_us(); current_time = get_current_time_us();
if(it->first <= current_time) if (it->first <= current_time) {
{
ret = it->second.handle(); ret = it->second.handle();
if (ret != 0) { if (ret != 0) {
mylog(log_trace, "handle() return %d\n", ret); mylog(log_trace, "handle() return %d\n", ret);
} }
free(it->second.data); free(it->second.data);
delay_mp.erase(it); delay_mp.erase(it);
} } else {
else
{
break; break;
} }
} }
if(!delay_mp.empty()) if (!delay_mp.empty()) {
{
const double m = 1000 * 1000; const double m = 1000 * 1000;
double timer_value = delay_mp.begin()->first / m - get_current_time_us() / m; // be aware of negative value, and be aware of uint double timer_value = delay_mp.begin()->first / m - get_current_time_us() / m; // be aware of negative value, and be aware of uint
if (timer_value < 0) timer_value = 0; // set it to 0 if negative, although libev support negative value if (timer_value < 0) timer_value = 0; // set it to 0 if negative, although libev support negative value
ev_timer_stop(loop, &timer); ev_timer_stop(loop, &timer);
ev_timer_set(&timer, timer_value, 0); ev_timer_set(&timer, timer_value, 0);
ev_timer_start(loop, &timer); ev_timer_start(loop, &timer);
} } else {
else
{
ev_timer_stop(loop, &timer); // not necessary ev_timer_stop(loop, &timer); // not necessary
} }
} }

View File

@ -103,9 +103,7 @@ struct my_timer_t
} }
};*/ };*/
struct delay_data_t {
struct delay_data_t
{
dest_t dest; dest_t dest;
// int left_time;// // int left_time;//
char *data; char *data;
@ -113,8 +111,7 @@ struct delay_data_t
int handle(); int handle();
}; };
struct delay_manager_t struct delay_manager_t {
{
ev_timer timer; ev_timer timer;
struct ev_loop *loop = 0; struct ev_loop *loop = 0;
void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents) = 0; void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents) = 0;
@ -123,17 +120,18 @@ struct delay_manager_t
int capacity; int capacity;
multimap<my_time_t, delay_data_t> delay_mp; // unit us,1 us=0.001ms multimap<my_time_t, delay_data_t> delay_mp; // unit us,1 us=0.001ms
delay_manager_t(); delay_manager_t();
delay_manager_t(delay_manager_t &b) delay_manager_t(delay_manager_t &b) {
{
assert(0 == 1); assert(0 == 1);
} }
void set_loop_and_cb(struct ev_loop *loop,void (*cb) (struct ev_loop *loop, struct ev_timer *watcher, int revents)) void set_loop_and_cb(struct ev_loop *loop, void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents)) {
{
this->loop = loop; this->loop = loop;
this->cb = cb; this->cb = cb;
ev_init(&timer, cb); ev_init(&timer, cb);
} }
int set_capacity(int a){capacity=a;return 0;} int set_capacity(int a) {
capacity = a;
return 0;
}
~delay_manager_t(); ~delay_manager_t();
ev_timer &get_timer(); ev_timer &get_timer();
int check(); int check();

View File

@ -5,59 +5,48 @@
* Author: root * Author: root
*/ */
#include "fd_manager.h" #include "fd_manager.h"
int fd_manager_t::fd_exist(int fd) int fd_manager_t::fd_exist(int fd) {
{
return fd_to_fd64_mp.find(fd) != fd_to_fd64_mp.end(); return fd_to_fd64_mp.find(fd) != fd_to_fd64_mp.end();
} }
int fd_manager_t::exist(fd64_t fd64) int fd_manager_t::exist(fd64_t fd64) {
{
return fd64_to_fd_mp.find(fd64) != fd64_to_fd_mp.end(); return fd64_to_fd_mp.find(fd64) != fd64_to_fd_mp.end();
} }
int fd_manager_t::to_fd(fd64_t fd64) int fd_manager_t::to_fd(fd64_t fd64) {
{
assert(exist(fd64)); assert(exist(fd64));
return fd64_to_fd_mp[fd64]; return fd64_to_fd_mp[fd64];
} }
void fd_manager_t::fd64_close(fd64_t fd64) void fd_manager_t::fd64_close(fd64_t fd64) {
{
assert(exist(fd64)); assert(exist(fd64));
int fd = fd64_to_fd_mp[fd64]; int fd = fd64_to_fd_mp[fd64];
fd64_to_fd_mp.erase(fd64); fd64_to_fd_mp.erase(fd64);
fd_to_fd64_mp.erase(fd); fd_to_fd64_mp.erase(fd);
if(exist_info(fd64)) if (exist_info(fd64)) {
{
fd_info_mp.erase(fd64); fd_info_mp.erase(fd64);
} }
sock_close(fd); sock_close(fd);
} }
void fd_manager_t::reserve(int n) void fd_manager_t::reserve(int n) {
{
fd_to_fd64_mp.reserve(n); fd_to_fd64_mp.reserve(n);
fd64_to_fd_mp.reserve(n); fd64_to_fd_mp.reserve(n);
fd_info_mp.reserve(n); fd_info_mp.reserve(n);
} }
u64_t fd_manager_t::create(int fd) u64_t fd_manager_t::create(int fd) {
{
assert(!fd_exist(fd)); assert(!fd_exist(fd));
fd64_t fd64 = counter++; fd64_t fd64 = counter++;
fd_to_fd64_mp[fd] = fd64; fd_to_fd64_mp[fd] = fd64;
fd64_to_fd_mp[fd64] = fd; fd64_to_fd_mp[fd64] = fd;
return fd64; return fd64;
} }
fd_manager_t::fd_manager_t() fd_manager_t::fd_manager_t() {
{
counter = u32_t(-1); counter = u32_t(-1);
counter += 100; counter += 100;
reserve(10007); reserve(10007);
} }
fd_info_t & fd_manager_t::get_info(fd64_t fd64) fd_info_t& fd_manager_t::get_info(fd64_t fd64) {
{
assert(exist(fd64)); assert(exist(fd64));
return fd_info_mp[fd64]; return fd_info_mp[fd64];
} }
int fd_manager_t::exist_info(fd64_t fd64) int fd_manager_t::exist_info(fd64_t fd64) {
{
return fd_info_mp.find(fd64) != fd_info_mp.end(); return fd_info_mp.find(fd64) != fd_info_mp.end();
} }

View File

@ -11,8 +11,6 @@
#include "common.h" #include "common.h"
#include "packet.h" #include "packet.h"
struct fd_manager_t // conver fd to a uniq 64bit number,avoid fd value conflict caused by close and re-create struct fd_manager_t // conver fd to a uniq 64bit number,avoid fd value conflict caused by close and re-create
// this class is not strictly necessary,it just makes epoll fd handling easier // this class is not strictly necessary,it just makes epoll fd handling easier
{ {
@ -24,6 +22,7 @@ struct fd_manager_t //conver fd to a uniq 64bit number,avoid fd value conflict
void reserve(int n); void reserve(int n);
u64_t create(int fd); u64_t create(int fd);
fd_manager_t(); fd_manager_t();
private: private:
u64_t counter; u64_t counter;
unordered_map<int, fd64_t> fd_to_fd64_mp; unordered_map<int, fd64_t> fd_to_fd64_mp;

View File

@ -32,34 +32,27 @@ int header_overhead=40;
u32_t fec_buff_num = 2000; // how many packet can fec_decode_manager hold. shouldnt be very large,or it will cost huge memory u32_t fec_buff_num = 2000; // how many packet can fec_decode_manager hold. shouldnt be very large,or it will cost huge memory
blob_encode_t::blob_encode_t() {
blob_encode_t::blob_encode_t()
{
clear(); clear();
} }
int blob_encode_t::clear() int blob_encode_t::clear() {
{
counter = 0; counter = 0;
current_len = (int)sizeof(u32_t); current_len = (int)sizeof(u32_t);
return 0; return 0;
} }
int blob_encode_t::get_num() int blob_encode_t::get_num() {
{
return counter; return counter;
} }
int blob_encode_t::get_shard_len(int n) int blob_encode_t::get_shard_len(int n) {
{
return round_up_div(current_len, n); return round_up_div(current_len, n);
} }
int blob_encode_t::get_shard_len(int n,int next_packet_len) int blob_encode_t::get_shard_len(int n, int next_packet_len) {
{
return round_up_div(current_len + (int)sizeof(u16_t) + next_packet_len, n); return round_up_div(current_len + (int)sizeof(u16_t) + next_packet_len, n);
} }
int blob_encode_t::input(char *s,int len) int blob_encode_t::input(char *s, int len) {
{
assert(current_len + len + sizeof(u16_t) + 100 < sizeof(input_buf)); assert(current_len + len + sizeof(u16_t) + 100 < sizeof(input_buf));
assert(len <= 65535 && len >= 0); assert(len <= 65535 && len >= 0);
counter++; counter++;
@ -71,32 +64,26 @@ int blob_encode_t::input(char *s,int len)
return 0; return 0;
} }
int blob_encode_t::output(int n,char ** &s_arr,int & len) int blob_encode_t::output(int n, char **&s_arr, int &len) {
{
len = round_up_div(current_len, n); len = round_up_div(current_len, n);
write_u32(input_buf, counter); write_u32(input_buf, counter);
for(int i=0;i<n;i++) for (int i = 0; i < n; i++) {
{
output_buf[i] = input_buf + len * i; output_buf[i] = input_buf + len * i;
} }
s_arr = output_buf; s_arr = output_buf;
return 0; return 0;
} }
blob_decode_t::blob_decode_t() blob_decode_t::blob_decode_t() {
{
clear(); clear();
} }
int blob_decode_t::clear() int blob_decode_t::clear() {
{
current_len = 0; current_len = 0;
last_len = -1; last_len = -1;
counter = 0; counter = 0;
return 0; return 0;
} }
int blob_decode_t::input(char *s,int len) int blob_decode_t::input(char *s, int len) {
{ if (last_len != -1) {
if(last_len!=-1)
{
assert(last_len == len); assert(last_len == len);
} }
counter++; counter++;
@ -107,34 +94,41 @@ int blob_decode_t::input(char *s,int len)
current_len += len; current_len += len;
return 0; return 0;
} }
int blob_decode_t::output(int &n,char ** &s_arr,int *&len_arr) int blob_decode_t::output(int &n, char **&s_arr, int *&len_arr) {
{
int parser_pos = 0; int parser_pos = 0;
if(parser_pos+(int)sizeof(u32_t)>current_len) {mylog(log_info,"failed 0\n");return -1;} if (parser_pos + (int)sizeof(u32_t) > current_len) {
mylog(log_info, "failed 0\n");
return -1;
}
n = (int)read_u32(input_buf + parser_pos); n = (int)read_u32(input_buf + parser_pos);
if(n>max_blob_packet_num) {mylog(log_info,"failed 1\n");return -1;} if (n > max_blob_packet_num) {
mylog(log_info, "failed 1\n");
return -1;
}
s_arr = output_buf; s_arr = output_buf;
len_arr = output_len; len_arr = output_len;
parser_pos += sizeof(u32_t); parser_pos += sizeof(u32_t);
for(int i=0;i<n;i++) for (int i = 0; i < n; i++) {
{ if (parser_pos + (int)sizeof(u16_t) > current_len) {
if(parser_pos+(int)sizeof(u16_t)>current_len) {mylog(log_info,"failed2 \n");return -1;} mylog(log_info, "failed2 \n");
return -1;
}
len_arr[i] = (int)read_u16(input_buf + parser_pos); len_arr[i] = (int)read_u16(input_buf + parser_pos);
parser_pos += (int)sizeof(u16_t); parser_pos += (int)sizeof(u16_t);
if(parser_pos+len_arr[i]>current_len) {mylog(log_info,"failed 3 %d %d %d\n",parser_pos,len_arr[i],current_len);return -1;} if (parser_pos + len_arr[i] > current_len) {
mylog(log_info, "failed 3 %d %d %d\n", parser_pos, len_arr[i], current_len);
return -1;
}
s_arr[i] = input_buf + parser_pos; s_arr[i] = input_buf + parser_pos;
parser_pos += len_arr[i]; parser_pos += len_arr[i];
} }
return 0; return 0;
} }
fec_encode_manager_t::~fec_encode_manager_t() {
fec_encode_manager_t::~fec_encode_manager_t()
{
clear_all(); clear_all();
// fd_manager.fd64_close(timer_fd64); // fd_manager.fd64_close(timer_fd64);
} }
@ -144,8 +138,7 @@ u64_t fec_encode_manager_t::get_timer_fd64()
return timer_fd64; return timer_fd64;
}*/ }*/
fec_encode_manager_t::fec_encode_manager_t() fec_encode_manager_t::fec_encode_manager_t() {
{
// int timer_fd; // int timer_fd;
/* /*
@ -156,12 +149,10 @@ fec_encode_manager_t::fec_encode_manager_t()
} }
timer_fd64=fd_manager.create(timer_fd);*/ timer_fd64=fd_manager.create(timer_fd);*/
/////reset_fec_parameter(g_fec_data_num,g_fec_redundant_num,g_fec_mtu,g_fec_queue_len,g_fec_timeout,g_fec_mode); /////reset_fec_parameter(g_fec_data_num,g_fec_redundant_num,g_fec_mtu,g_fec_queue_len,g_fec_timeout,g_fec_mode);
fec_par.clone(g_fec_par); fec_par.clone(g_fec_par);
clear_data(); clear_data();
} }
/* /*
int fec_encode_manager_t::reset_fec_parameter(int data_num,int redundant_num,int mtu,int queue_len,int timeout,int mode) int fec_encode_manager_t::reset_fec_parameter(int data_num,int redundant_num,int mtu,int queue_len,int timeout,int mode)
@ -180,10 +171,8 @@ int fec_encode_manager_t::reset_fec_parameter(int data_num,int redundant_num,int
clear_data(); clear_data();
return 0; return 0;
}*/ }*/
int fec_encode_manager_t::append(char *s,int len/*,int &is_first_packet*/) int fec_encode_manager_t::append(char *s, int len /*,int &is_first_packet*/) {
{ if (counter == 0) {
if(counter==0)
{
first_packet_time = get_current_time_us(); first_packet_time = get_current_time_us();
const double m = 1000 * 1000; const double m = 1000 * 1000;
@ -195,8 +184,7 @@ int fec_encode_manager_t::append(char *s,int len/*,int &is_first_packet*/)
if (fec_par.mode == 0) // for type 0 use blob if (fec_par.mode == 0) // for type 0 use blob
{ {
assert(blob_encode.input(s, len) == 0); assert(blob_encode.input(s, len) == 0);
} } else if (fec_par.mode == 1) // for tpe 1 use input_buf and counter
else if(fec_par.mode==1)//for tpe 1 use input_buf and counter
{ {
mylog(log_trace, "counter=%d\n", counter); mylog(log_trace, "counter=%d\n", counter);
assert(len <= 65535 && len >= 0); assert(len <= 65535 && len >= 0);
@ -208,18 +196,14 @@ int fec_encode_manager_t::append(char *s,int len/*,int &is_first_packet*/)
p += sizeof(u16_t); p += sizeof(u16_t);
memcpy(p, s, len); memcpy(p, s, len);
input_len[counter] = len + sizeof(u16_t); input_len[counter] = len + sizeof(u16_t);
} } else {
else
{
assert(0 == 1); assert(0 == 1);
} }
counter++; counter++;
return 0; return 0;
} }
int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/) int fec_encode_manager_t::input(char *s, int len /*,int &is_first_packet*/) {
{ if (counter == 0 && fec_par.version != g_fec_par.version) {
if(counter==0&&fec_par.version!=g_fec_par.version)
{
fec_par.clone(g_fec_par); fec_par.clone(g_fec_par);
} }
@ -228,35 +212,32 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
// int counter_back=counter; // int counter_back=counter;
assert(fec_par.mode == 0 || fec_par.mode == 1); assert(fec_par.mode == 0 || fec_par.mode == 1);
if(fec_par.mode==0&& s!=0 &&counter==0) if (fec_par.mode == 0 && s != 0 && counter == 0) {
{
int out_len = blob_encode.get_shard_len(fec_par.get_tail().x, len); int out_len = blob_encode.get_shard_len(fec_par.get_tail().x, len);
if(out_len>fec_par.mtu) if (out_len > fec_par.mtu) {
{
mylog(log_warn, "message too long ori_len=%d out_len=%d fec_mtu=%d,ignored\n", len, out_len, fec_par.mtu); mylog(log_warn, "message too long ori_len=%d out_len=%d fec_mtu=%d,ignored\n", len, out_len, fec_par.mtu);
return -1; return -1;
} }
} }
if(fec_par.mode==1&&s!=0&&len>fec_par.mtu) if (fec_par.mode == 1 && s != 0 && len > fec_par.mtu) {
{
mylog(log_warn, "mode==1,message len=%d,len>fec_mtu,fec_mtu=%d,packet may not be delivered\n", len, fec_par.mtu); mylog(log_warn, "mode==1,message len=%d,len>fec_mtu,fec_mtu=%d,packet may not be delivered\n", len, fec_par.mtu);
// return -1; // return -1;
} }
if(s==0&&counter==0) if (s == 0 && counter == 0) {
{
mylog(log_warn, "unexpected s==0&&counter==0\n"); mylog(log_warn, "unexpected s==0&&counter==0\n");
return -1; return -1;
} }
if (s == 0) about_to_fec = 1; // now if (s == 0) about_to_fec = 1; // now
if(fec_par.mode==0&& blob_encode.get_shard_len(fec_par.get_tail().x,len)>fec_par.mtu) {about_to_fec=1; delayed_append=1;}//fec then add packet if (fec_par.mode == 0 && blob_encode.get_shard_len(fec_par.get_tail().x, len) > fec_par.mtu) {
about_to_fec = 1;
delayed_append = 1;
} // fec then add packet
if (fec_par.mode == 0) assert(counter < fec_par.queue_len); // counter will never equal fec_pending_num,if that happens fec should already been done. if (fec_par.mode == 0) assert(counter < fec_par.queue_len); // counter will never equal fec_pending_num,if that happens fec should already been done.
if (fec_par.mode == 1) assert(counter < fec_par.get_tail().x); if (fec_par.mode == 1) assert(counter < fec_par.get_tail().x);
if (s != 0 && !delayed_append) {
if(s!=0&&!delayed_append)
{
append(s, len); append(s, len);
} }
@ -264,15 +245,12 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
if (fec_par.mode == 1 && counter == fec_par.get_tail().x) about_to_fec = 1; if (fec_par.mode == 1 && counter == fec_par.get_tail().x) about_to_fec = 1;
if (about_to_fec) {
if(about_to_fec)
{
char **blob_output = 0; char **blob_output = 0;
int fec_len = -1; int fec_len = -1;
mylog(log_trace, "counter=%d\n", counter); mylog(log_trace, "counter=%d\n", counter);
if(counter==0) if (counter == 0) {
{
mylog(log_warn, "unexpected counter==0 here\n"); mylog(log_warn, "unexpected counter==0 here\n");
return -1; return -1;
} }
@ -280,22 +258,17 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
int actual_data_num; int actual_data_num;
int actual_redundant_num; int actual_redundant_num;
if(fec_par.mode==0) if (fec_par.mode == 0) {
{
int tail_x = fec_par.get_tail().x; int tail_x = fec_par.get_tail().x;
int tail_y = fec_par.get_tail().y; int tail_y = fec_par.get_tail().y;
actual_data_num = tail_x; actual_data_num = tail_x;
actual_redundant_num = tail_y; actual_redundant_num = tail_y;
if(short_packet_optimize) if (short_packet_optimize) {
{
u32_t best_len = (blob_encode.get_shard_len(tail_x, 0) + header_overhead) * (tail_x + tail_y); u32_t best_len = (blob_encode.get_shard_len(tail_x, 0) + header_overhead) * (tail_x + tail_y);
int best_data_num = tail_x; int best_data_num = tail_x;
assert(tail_x <= fec_par.rs_cnt); assert(tail_x <= fec_par.rs_cnt);
for(int i=1;i<tail_x;i++) for (int i = 1; i < tail_x; i++) {
{
assert(fec_par.rs_par[i - 1].x == i); assert(fec_par.rs_par[i - 1].x == i);
int tmp_x = fec_par.rs_par[i - 1].x; int tmp_x = fec_par.rs_par[i - 1].x;
int tmp_y = fec_par.rs_par[i - 1].y; int tmp_y = fec_par.rs_par[i - 1].y;
@ -304,8 +277,7 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
if (shard_len > (u32_t)fec_par.mtu) continue; if (shard_len > (u32_t)fec_par.mtu) continue;
u32_t new_len = (shard_len + header_overhead) * (tmp_x + tmp_y); u32_t new_len = (shard_len + header_overhead) * (tmp_x + tmp_y);
if(new_len<best_len) if (new_len < best_len) {
{
best_len = new_len; best_len = new_len;
best_data_num = tmp_x; best_data_num = tmp_x;
} }
@ -321,16 +293,13 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
mylog(log_debug, "[enc]seq=%08x x=%d y=%d len=%d cnt=%d\n", seq, actual_data_num, actual_redundant_num, fec_len, counter); mylog(log_debug, "[enc]seq=%08x x=%d y=%d len=%d cnt=%d\n", seq, actual_data_num, actual_redundant_num, fec_len, counter);
else else
mylog(log_trace, "[enc]seq=%08x x=%d y=%d len=%d cnt=%d\n", seq, actual_data_num, actual_redundant_num, fec_len, counter); mylog(log_trace, "[enc]seq=%08x x=%d y=%d len=%d cnt=%d\n", seq, actual_data_num, actual_redundant_num, fec_len, counter);
} } else {
else
{
assert(counter <= fec_par.rs_cnt); assert(counter <= fec_par.rs_cnt);
actual_data_num = counter; actual_data_num = counter;
actual_redundant_num = fec_par.rs_par[counter - 1].y; actual_redundant_num = fec_par.rs_par[counter - 1].y;
int sum_ori = 0; int sum_ori = 0;
for(int i=0;i<counter;i++) for (int i = 0; i < counter; i++) {
{
sum_ori += input_len[i]; sum_ori += input_len[i];
assert(input_len[i] >= 0); assert(input_len[i] >= 0);
if (input_len[i] > fec_len) fec_len = input_len[i]; if (input_len[i] > fec_len) fec_len = input_len[i];
@ -347,19 +316,16 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
// mylog(log_trace,"%d %d %d\n",actual_data_num,actual_redundant_num,fec_len); // mylog(log_trace,"%d %d %d\n",actual_data_num,actual_redundant_num,fec_len);
char *tmp_output_buf[max_fec_packet_num + 5] = {0}; char *tmp_output_buf[max_fec_packet_num + 5] = {0};
for(int i=0;i<actual_data_num+actual_redundant_num;i++) for (int i = 0; i < actual_data_num + actual_redundant_num; i++) {
{
int tmp_idx = 0; int tmp_idx = 0;
write_u32(input_buf[i] + tmp_idx, seq); write_u32(input_buf[i] + tmp_idx, seq);
tmp_idx += sizeof(u32_t); tmp_idx += sizeof(u32_t);
input_buf[i][tmp_idx++] = (unsigned char)fec_par.mode; input_buf[i][tmp_idx++] = (unsigned char)fec_par.mode;
if (fec_par.mode == 1 && i < actual_data_num) if (fec_par.mode == 1 && i < actual_data_num) {
{
input_buf[i][tmp_idx++] = (unsigned char)0; input_buf[i][tmp_idx++] = (unsigned char)0;
input_buf[i][tmp_idx++] = (unsigned char)0; input_buf[i][tmp_idx++] = (unsigned char)0;
} else } else {
{
input_buf[i][tmp_idx++] = (unsigned char)actual_data_num; input_buf[i][tmp_idx++] = (unsigned char)actual_data_num;
input_buf[i][tmp_idx++] = (unsigned char)actual_redundant_num; input_buf[i][tmp_idx++] = (unsigned char)actual_redundant_num;
} }
@ -367,38 +333,27 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
tmp_output_buf[i] = input_buf[i] + tmp_idx; //////caution ,trick here. tmp_output_buf[i] = input_buf[i] + tmp_idx; //////caution ,trick here.
if(fec_par.mode==0) if (fec_par.mode == 0) {
{
output_len[i] = tmp_idx + fec_len; output_len[i] = tmp_idx + fec_len;
if(i<actual_data_num) if (i < actual_data_num) {
{
memcpy(input_buf[i] + tmp_idx, blob_output[i], fec_len); memcpy(input_buf[i] + tmp_idx, blob_output[i], fec_len);
} }
} } else {
else if (i < actual_data_num) {
{
if(i<actual_data_num)
{
output_len[i] = tmp_idx + input_len[i]; output_len[i] = tmp_idx + input_len[i];
memset(tmp_output_buf[i] + input_len[i], 0, fec_len - input_len[i]); memset(tmp_output_buf[i] + input_len[i], 0, fec_len - input_len[i]);
} } else
else
output_len[i] = tmp_idx + fec_len; output_len[i] = tmp_idx + fec_len;
} }
output_buf[i] = input_buf[i]; // output_buf points to same block of memory with different offset output_buf[i] = input_buf[i]; // output_buf points to same block of memory with different offset
} }
if(0) if (0) {
{
printf("seq=%u,fec_len=%d,%d %d,before fec\n", seq, fec_len, actual_data_num, actual_redundant_num); printf("seq=%u,fec_len=%d,%d %d,before fec\n", seq, fec_len, actual_data_num, actual_redundant_num);
for(int i=0;i<actual_data_num;i++) for (int i = 0; i < actual_data_num; i++) {
{
printf("{"); printf("{");
for(int j=0;j<8+fec_len;j++) for (int j = 0; j < 8 + fec_len; j++) {
{
log_bare(log_warn, "0x%02x,", (u32_t)(unsigned char)input_buf[i][j]); log_bare(log_warn, "0x%02x,", (u32_t)(unsigned char)input_buf[i][j]);
} }
printf("},\n"); printf("},\n");
@ -408,14 +363,11 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
// output_len=blob_len+sizeof(u32_t)+4*sizeof(char);/////remember to change this 4,if modified the protocol // output_len=blob_len+sizeof(u32_t)+4*sizeof(char);/////remember to change this 4,if modified the protocol
rs_encode2(actual_data_num, actual_data_num + actual_redundant_num, tmp_output_buf, fec_len); rs_encode2(actual_data_num, actual_data_num + actual_redundant_num, tmp_output_buf, fec_len);
if(0) if (0) {
{
printf("seq=%u,fec_len=%d,%d %d,after fec\n", seq, fec_len, actual_data_num, actual_redundant_num); printf("seq=%u,fec_len=%d,%d %d,after fec\n", seq, fec_len, actual_data_num, actual_redundant_num);
for(int i=0;i<actual_data_num+actual_redundant_num;i++) for (int i = 0; i < actual_data_num + actual_redundant_num; i++) {
{
printf("{"); printf("{");
for(int j=0;j<8+fec_len;j++) for (int j = 0; j < 8 + fec_len; j++) {
{
log_bare(log_warn, "0x%02x,", (u32_t)(unsigned char)output_buf[i][j]); log_bare(log_warn, "0x%02x,", (u32_t)(unsigned char)output_buf[i][j]);
} }
printf("},\n"); printf("},\n");
@ -438,32 +390,24 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
ev_timer_stop(loop, &timer); ev_timer_stop(loop, &timer);
// timerfd_settime(timer_fd,TFD_TIMER_ABSTIME,&its,0); // timerfd_settime(timer_fd,TFD_TIMER_ABSTIME,&its,0);
if(encode_fast_send&&fec_par.mode==1) if (encode_fast_send && fec_par.mode == 1) {
{
int packet_to_send[max_fec_packet_num + 5] = {0}; int packet_to_send[max_fec_packet_num + 5] = {0};
int packet_to_send_counter = 0; int packet_to_send_counter = 0;
// assert(counter!=0); // assert(counter!=0);
if (s != 0) if (s != 0)
packet_to_send[packet_to_send_counter++] = actual_data_num - 1; packet_to_send[packet_to_send_counter++] = actual_data_num - 1;
for(int i=actual_data_num;i<actual_data_num+actual_redundant_num;i++) for (int i = actual_data_num; i < actual_data_num + actual_redundant_num; i++) {
{
packet_to_send[packet_to_send_counter++] = i; packet_to_send[packet_to_send_counter++] = i;
} }
output_n = packet_to_send_counter; // re write output_n = packet_to_send_counter; // re write
for(int i=0;i<packet_to_send_counter;i++) for (int i = 0; i < packet_to_send_counter; i++) {
{
output_buf[i] = output_buf[packet_to_send[i]]; output_buf[i] = output_buf[packet_to_send[i]];
output_len[i] = output_len[packet_to_send[i]]; output_len[i] = output_len[packet_to_send[i]];
} }
} }
} } else {
else if (encode_fast_send && s != 0 && fec_par.mode == 1) {
{
if(encode_fast_send&&s!=0&&fec_par.mode==1)
{
assert(counter >= 1); assert(counter >= 1);
assert(counter <= 255); assert(counter <= 255);
int input_buf_idx = counter - 1; int input_buf_idx = counter - 1;
@ -472,7 +416,6 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
first_packet_time_for_output = 0; first_packet_time_for_output = 0;
output_n = 1; output_n = 1;
int tmp_idx = 0; int tmp_idx = 0;
write_u32(input_buf[input_buf_idx] + tmp_idx, seq); write_u32(input_buf[input_buf_idx] + tmp_idx, seq);
tmp_idx += sizeof(u32_t); tmp_idx += sizeof(u32_t);
@ -485,11 +428,9 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
output_len[0] = input_len[input_buf_idx] + tmp_idx; output_len[0] = input_len[input_buf_idx] + tmp_idx;
output_buf[0] = input_buf[input_buf_idx]; output_buf[0] = input_buf[input_buf_idx];
if(0) if (0) {
{
printf("seq=%u,buf_idx=%d\n", seq, input_buf_idx); printf("seq=%u,buf_idx=%d\n", seq, input_buf_idx);
for(int j=0;j<output_len[0];j++) for (int j = 0; j < output_len[0]; j++) {
{
log_bare(log_warn, "0x%02x,", (u32_t)(unsigned char)output_buf[0][j]); log_bare(log_warn, "0x%02x,", (u32_t)(unsigned char)output_buf[0][j]);
} }
printf("\n"); printf("\n");
@ -497,8 +438,7 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
} }
} }
if(s!=0&&delayed_append) if (s != 0 && delayed_append) {
{
assert(fec_par.mode != 1); assert(fec_par.mode != 1);
append(s, len); append(s, len);
} }
@ -506,16 +446,12 @@ int fec_encode_manager_t::input(char *s,int len/*,int &is_first_packet*/)
return 0; return 0;
} }
int fec_encode_manager_t::output(int &n,char ** &s_arr,int *&len) int fec_encode_manager_t::output(int &n, char **&s_arr, int *&len) {
{ if (!ready_for_output) {
if(!ready_for_output)
{
n = -1; n = -1;
len = 0; len = 0;
s_arr = 0; s_arr = 0;
} } else {
else
{
n = output_n; n = output_n;
len = output_len; len = output_len;
s_arr = output_buf; s_arr = output_buf;
@ -530,15 +466,13 @@ int fec_decode_manager_t::re_init()
return 0; return 0;
}*/ }*/
int fec_decode_manager_t::input(char *s,int len) int fec_decode_manager_t::input(char *s, int len) {
{
assert(s != 0); assert(s != 0);
assert(len + 100 < buf_len); // guarenteed by upper level assert(len + 100 < buf_len); // guarenteed by upper level
int tmp_idx = 0; int tmp_idx = 0;
int tmp_header_len = sizeof(u32_t) + sizeof(char) * 4; int tmp_header_len = sizeof(u32_t) + sizeof(char) * 4;
if(len<tmp_header_len) if (len < tmp_header_len) {
{
mylog(log_warn, "len =%d\n", len); mylog(log_warn, "len =%d\n", len);
return -1; return -1;
} }
@ -552,80 +486,63 @@ int fec_decode_manager_t::input(char *s,int len)
// mylog(log_trace,"input\n"); // mylog(log_trace,"input\n");
if(len<0) if (len < 0) {
{
mylog(log_warn, "len<0\n"); mylog(log_warn, "len<0\n");
return -1; return -1;
} }
if(type==1) if (type == 1) {
{ if (len < (int)sizeof(u16_t)) {
if(len<(int)sizeof(u16_t))
{
mylog(log_warn, "type==1&&len<2\n"); mylog(log_warn, "type==1&&len<2\n");
return -1; return -1;
} }
if(data_num==0&&(int)( read_u16(s+tmp_idx)+sizeof(u16_t))!=len) if (data_num == 0 && (int)(read_u16(s + tmp_idx) + sizeof(u16_t)) != len) {
{
mylog(log_warn, "inner_index<data_num&&read_u16(s+tmp_idx)+sizeof(u16_t)!=len %d %d\n", (int)(read_u16(s + tmp_idx) + sizeof(u16_t)), len); mylog(log_warn, "inner_index<data_num&&read_u16(s+tmp_idx)+sizeof(u16_t)!=len %d %d\n", (int)(read_u16(s + tmp_idx) + sizeof(u16_t)), len);
return -1; return -1;
} }
} }
if(type==0&&data_num==0) if (type == 0 && data_num == 0) {
{
mylog(log_warn, "unexpected type==0&&data_num==0\n"); mylog(log_warn, "unexpected type==0&&data_num==0\n");
return -1; return -1;
} }
if(data_num+redundant_num>=max_fec_packet_num) if (data_num + redundant_num >= max_fec_packet_num) {
{
mylog(log_warn, "data_num+redundant_num>=max_fec_packet_num\n"); mylog(log_warn, "data_num+redundant_num>=max_fec_packet_num\n");
return -1; return -1;
} }
if(!anti_replay.is_vaild(seq)) if (!anti_replay.is_vaild(seq)) {
{
mylog(log_trace, "!anti_replay.is_vaild(seq) ,seq =%u\n", seq); mylog(log_trace, "!anti_replay.is_vaild(seq) ,seq =%u\n", seq);
return 0; return 0;
} }
if(mp[seq].fec_done!=0) if (mp[seq].fec_done != 0) {
{
mylog(log_debug, "fec already done, ignore, seq=%u\n", seq); mylog(log_debug, "fec already done, ignore, seq=%u\n", seq);
return -1; return -1;
} }
if(mp[seq].group_mp.find(inner_index)!=mp[seq].group_mp.end() ) if (mp[seq].group_mp.find(inner_index) != mp[seq].group_mp.end()) {
{
mylog(log_debug, "dup fec index\n"); // duplicate can happen on a normal network, so its just log_debug mylog(log_debug, "dup fec index\n"); // duplicate can happen on a normal network, so its just log_debug
return -1; return -1;
} }
if (mp[seq].type == -1) if (mp[seq].type == -1)
mp[seq].type = type; mp[seq].type = type;
else else {
{ if (mp[seq].type != type) {
if(mp[seq].type!=type)
{
mylog(log_warn, "type mismatch\n"); mylog(log_warn, "type mismatch\n");
return -1; return -1;
} }
} }
if(data_num!=0) if (data_num != 0) {
{
// mp[seq].data_counter++; // mp[seq].data_counter++;
if(mp[seq].data_num==-1) if (mp[seq].data_num == -1) {
{
mp[seq].data_num = data_num; mp[seq].data_num = data_num;
mp[seq].redundant_num = redundant_num; mp[seq].redundant_num = redundant_num;
mp[seq].len = len; mp[seq].len = len;
} } else {
else if (mp[seq].data_num != data_num || mp[seq].redundant_num != redundant_num || mp[seq].len != len) {
{
if(mp[seq].data_num!=data_num||mp[seq].redundant_num!=redundant_num||mp[seq].len!=len)
{
mylog(log_warn, "unexpected mp[seq].data_num!=data_num||mp[seq].redundant_num!=redundant_num||mp[seq].len!=len\n"); mylog(log_warn, "unexpected mp[seq].data_num!=data_num||mp[seq].redundant_num!=redundant_num||mp[seq].len!=len\n");
return -1; return -1;
} }
@ -634,20 +551,17 @@ int fec_decode_manager_t::input(char *s,int len)
// mylog(log_info,"mp.size()=%d index=%d\n",mp.size(),index); // mylog(log_info,"mp.size()=%d index=%d\n",mp.size(),index);
if(fec_data[index].used!=0) if (fec_data[index].used != 0) {
{
u32_t tmp_seq = fec_data[index].seq; u32_t tmp_seq = fec_data[index].seq;
anti_replay.set_invaild(tmp_seq); anti_replay.set_invaild(tmp_seq);
auto tmp_it = mp.find(tmp_seq); auto tmp_it = mp.find(tmp_seq);
if(tmp_it!=mp.end()) if (tmp_it != mp.end()) {
{
int x = tmp_it->second.data_num; int x = tmp_it->second.data_num;
int y = tmp_it->second.redundant_num; int y = tmp_it->second.redundant_num;
int cnt = tmp_it->second.group_mp.size(); int cnt = tmp_it->second.group_mp.size();
if(cnt<x) if (cnt < x) {
{
if (debug_fec_dec) if (debug_fec_dec)
mylog(log_debug, "[dec][failed]seq=%08x x=%d y=%d cnt=%d\n", tmp_seq, x, y, cnt); mylog(log_debug, "[dec][failed]seq=%08x x=%d y=%d cnt=%d\n", tmp_seq, x, y, cnt);
else else
@ -655,8 +569,7 @@ int fec_decode_manager_t::input(char *s,int len)
} }
mp.erase(tmp_it); mp.erase(tmp_it);
} }
if(tmp_seq==seq) if (tmp_seq == seq) {
{
mylog(log_warn, "unexpected tmp_seq==seq ,seq=%d\n", seq); mylog(log_warn, "unexpected tmp_seq==seq ,seq=%d\n", seq);
return -1; return -1;
} }
@ -677,51 +590,39 @@ int fec_decode_manager_t::input(char *s,int len)
map<int, int> &inner_mp = mp[seq].group_mp; map<int, int> &inner_mp = mp[seq].group_mp;
int about_to_fec = 0; int about_to_fec = 0;
if(type==0) if (type == 0) {
{
// assert((int)inner_mp.size()<=data_num); // assert((int)inner_mp.size()<=data_num);
if((int)inner_mp.size()>data_num) if ((int)inner_mp.size() > data_num) {
{
mylog(log_warn, "inner_mp.size()>data_num\n"); mylog(log_warn, "inner_mp.size()>data_num\n");
anti_replay.set_invaild(seq); anti_replay.set_invaild(seq);
goto end; goto end;
} }
if ((int)inner_mp.size() == data_num) if ((int)inner_mp.size() == data_num)
about_to_fec = 1; about_to_fec = 1;
} } else {
else if (mp[seq].data_num != -1) {
{ if ((int)inner_mp.size() > mp[seq].data_num + 1) {
if(mp[seq].data_num!=-1)
{
if((int)inner_mp.size()>mp[seq].data_num+1)
{
mylog(log_warn, "inner_mp.size()>data_num+1\n"); mylog(log_warn, "inner_mp.size()>data_num+1\n");
anti_replay.set_invaild(seq); anti_replay.set_invaild(seq);
goto end; goto end;
} }
if((int)inner_mp.size()>=mp[seq].data_num) if ((int)inner_mp.size() >= mp[seq].data_num) {
{
about_to_fec = 1; about_to_fec = 1;
} }
} }
} }
if (about_to_fec) {
if(about_to_fec)
{
int group_data_num = mp[seq].data_num; int group_data_num = mp[seq].data_num;
int group_redundant_num = mp[seq].redundant_num; int group_redundant_num = mp[seq].redundant_num;
int x_got = 0; int x_got = 0;
int y_got = 0; int y_got = 0;
// mylog(log_error,"fec here!\n"); // mylog(log_error,"fec here!\n");
if(type==0) if (type == 0) {
{
char *fec_tmp_arr[max_fec_packet_num + 5] = {0}; char *fec_tmp_arr[max_fec_packet_num + 5] = {0};
for(auto it=inner_mp.begin();it!=inner_mp.end();it++) for (auto it = inner_mp.begin(); it != inner_mp.end(); it++) {
{
if (it->first < group_data_num) if (it->first < group_data_num)
x_got++; x_got++;
else else
@ -738,12 +639,10 @@ int fec_decode_manager_t::input(char *s,int len)
mylog(log_trace, "[dec]seq=%08x x=%d y=%d len=%d cnt=%d X=%d Y=%d\n", seq, group_data_num, group_redundant_num, len, int(inner_mp.size()), x_got, y_got); mylog(log_trace, "[dec]seq=%08x x=%d y=%d len=%d cnt=%d X=%d Y=%d\n", seq, group_data_num, group_redundant_num, len, int(inner_mp.size()), x_got, y_got);
blob_decode.clear(); blob_decode.clear();
for(int i=0;i<group_data_num;i++) for (int i = 0; i < group_data_num; i++) {
{
blob_decode.input(fec_tmp_arr[i], len); blob_decode.input(fec_tmp_arr[i], len);
} }
if(blob_decode.output(output_n,output_s_arr,output_len_arr)!=0) if (blob_decode.output(output_n, output_s_arr, output_len_arr) != 0) {
{
mylog(log_warn, "blob_decode failed\n"); mylog(log_warn, "blob_decode failed\n");
// ready_for_output=0; // ready_for_output=0;
anti_replay.set_invaild(seq); anti_replay.set_invaild(seq);
@ -752,11 +651,8 @@ int fec_decode_manager_t::input(char *s,int len)
assert(ready_for_output == 0); assert(ready_for_output == 0);
ready_for_output = 1; ready_for_output = 1;
anti_replay.set_invaild(seq); anti_replay.set_invaild(seq);
} } else // type==1
else//type==1
{ {
int max_len = -1; int max_len = -1;
int fec_result_ok = 1; int fec_result_ok = 1;
int data_check_ok = 1; int data_check_ok = 1;
@ -769,20 +665,17 @@ int fec_decode_manager_t::input(char *s,int len)
// memset(output_s_arr_buf,0,sizeof(output_s_arr_buf));//in efficient // memset(output_s_arr_buf,0,sizeof(output_s_arr_buf));//in efficient
for(int i=0;i<group_data_num+group_redundant_num;i++) for (int i = 0; i < group_data_num + group_redundant_num; i++) {
{
output_s_arr_buf[i] = 0; output_s_arr_buf[i] = 0;
} }
for(auto it=inner_mp.begin();it!=inner_mp.end();it++) for (auto it = inner_mp.begin(); it != inner_mp.end(); it++) {
{
if (it->first < group_data_num) if (it->first < group_data_num)
x_got++; x_got++;
else else
y_got++; y_got++;
output_s_arr_buf[it->first] = fec_data[it->second].buf; output_s_arr_buf[it->first] = fec_data[it->second].buf;
if(fec_data[it->second].len<(int)sizeof(u16_t)) if (fec_data[it->second].len < (int)sizeof(u16_t)) {
{
mylog(log_warn, "fec_data[it->second].len<(int)sizeof(u16_t)"); mylog(log_warn, "fec_data[it->second].len<(int)sizeof(u16_t)");
data_check_ok = 0; data_check_ok = 0;
} }
@ -790,27 +683,23 @@ int fec_decode_manager_t::input(char *s,int len)
if (fec_data[it->second].len > max_len) if (fec_data[it->second].len > max_len)
max_len = fec_data[it->second].len; max_len = fec_data[it->second].len;
} }
if(max_len!=mp[seq].len) if (max_len != mp[seq].len) {
{
data_check_ok = 0; data_check_ok = 0;
mylog(log_warn, "max_len!=mp[seq].len"); mylog(log_warn, "max_len!=mp[seq].len");
} }
if(data_check_ok==0) if (data_check_ok == 0) {
{
// ready_for_output=0; // ready_for_output=0;
mylog(log_warn, "data_check_ok==0\n"); mylog(log_warn, "data_check_ok==0\n");
anti_replay.set_invaild(seq); anti_replay.set_invaild(seq);
goto end; goto end;
} }
for(auto it=inner_mp.begin();it!=inner_mp.end();it++) for (auto it = inner_mp.begin(); it != inner_mp.end(); it++) {
{
int tmp_idx = it->second; int tmp_idx = it->second;
assert(max_len >= fec_data[tmp_idx].len); // guarenteed by data_check_ok assert(max_len >= fec_data[tmp_idx].len); // guarenteed by data_check_ok
memset(fec_data[tmp_idx].buf + fec_data[tmp_idx].len, 0, max_len - fec_data[tmp_idx].len); memset(fec_data[tmp_idx].buf + fec_data[tmp_idx].len, 0, max_len - fec_data[tmp_idx].len);
} }
for(int i=0;i<group_data_num;i++) for (int i = 0; i < group_data_num; i++) {
{
if (output_s_arr_buf[i] == 0 || i == inner_index) // only missed packet +current packet if (output_s_arr_buf[i] == 0 || i == inner_index) // only missed packet +current packet
{ {
missed_packet[missed_packet_counter++] = i; missed_packet[missed_packet_counter++] = i;
@ -823,17 +712,14 @@ int fec_decode_manager_t::input(char *s,int len)
int sum_ori = 0; int sum_ori = 0;
for(int i=0;i<group_data_num;i++) for (int i = 0; i < group_data_num; i++) {
{
output_len_arr_buf[i] = read_u16(output_s_arr_buf[i]); output_len_arr_buf[i] = read_u16(output_s_arr_buf[i]);
sum_ori += output_len_arr_buf[i]; sum_ori += output_len_arr_buf[i];
output_s_arr_buf[i] += sizeof(u16_t); output_s_arr_buf[i] += sizeof(u16_t);
if(output_len_arr_buf[i]>max_data_len) if (output_len_arr_buf[i] > max_data_len) {
{
mylog(log_warn, "invaild len %d,seq= %u,data_num= %d r_num= %d,i= %d\n", output_len_arr_buf[i], seq, group_data_num, group_redundant_num, i); mylog(log_warn, "invaild len %d,seq= %u,data_num= %d r_num= %d,i= %d\n", output_len_arr_buf[i], seq, group_data_num, group_redundant_num, i);
fec_result_ok = 0; fec_result_ok = 0;
for(int i=0;i<missed_packet_counter;i++) for (int i = 0; i < missed_packet_counter; i++) {
{
log_bare(log_warn, "%d ", missed_packet[i]); log_bare(log_warn, "%d ", missed_packet[i]);
} }
log_bare(log_warn, "\n"); log_bare(log_warn, "\n");
@ -848,50 +734,38 @@ int fec_decode_manager_t::input(char *s,int len)
else else
mylog(log_trace, "[dec]seq=%08x x=%d y=%d len=%d sum_ori=%d sum=%d X=%d Y=%d\n", seq, group_data_num, group_redundant_num, max_len, sum_ori, sum, x_got, y_got); mylog(log_trace, "[dec]seq=%08x x=%d y=%d len=%d sum_ori=%d sum=%d X=%d Y=%d\n", seq, group_data_num, group_redundant_num, max_len, sum_ori, sum, x_got, y_got);
if(fec_result_ok) if (fec_result_ok) {
{
output_n = group_data_num; output_n = group_data_num;
if(decode_fast_send) if (decode_fast_send) {
{
output_n = missed_packet_counter; output_n = missed_packet_counter;
for(int i=0;i<missed_packet_counter;i++) for (int i = 0; i < missed_packet_counter; i++) {
{
output_s_arr_buf[i] = output_s_arr_buf[missed_packet[i]]; output_s_arr_buf[i] = output_s_arr_buf[missed_packet[i]];
output_len_arr_buf[i] = output_len_arr_buf[missed_packet[i]]; output_len_arr_buf[i] = output_len_arr_buf[missed_packet[i]];
} }
} }
output_s_arr = output_s_arr_buf; output_s_arr = output_s_arr_buf;
output_len_arr = output_len_arr_buf; output_len_arr = output_len_arr_buf;
assert(ready_for_output == 0); assert(ready_for_output == 0);
ready_for_output = 1; ready_for_output = 1;
} } else {
else
{
// fec_not_ok: // fec_not_ok:
ready_for_output = 0; ready_for_output = 0;
} }
anti_replay.set_invaild(seq); anti_replay.set_invaild(seq);
} // end of type==1 } // end of type==1
} } else // not about_to_fec
else //not about_to_fec
{
if(decode_fast_send)
{
if(type==1&&data_num==0)
{ {
if (decode_fast_send) {
if (type == 1 && data_num == 0) {
assert(ready_for_output == 0); assert(ready_for_output == 0);
output_n = 1; output_n = 1;
int check_len = read_u16(fec_data[index].buf); int check_len = read_u16(fec_data[index].buf);
output_s_arr_buf[0] = fec_data[index].buf + sizeof(u16_t); output_s_arr_buf[0] = fec_data[index].buf + sizeof(u16_t);
output_len_arr_buf[0] = fec_data[index].len - sizeof(u16_t); output_len_arr_buf[0] = fec_data[index].len - sizeof(u16_t);
if(output_len_arr_buf[0]!=check_len) if (output_len_arr_buf[0] != check_len) {
{
mylog(log_warn, "len mismatch %d %d\n", output_len_arr_buf[0], check_len); mylog(log_warn, "len mismatch %d %d\n", output_len_arr_buf[0], check_len);
} }
output_s_arr = output_s_arr_buf; output_s_arr = output_s_arr_buf;
@ -908,16 +782,12 @@ int fec_decode_manager_t::input(char *s,int len)
return 0; return 0;
} }
int fec_decode_manager_t::output(int &n,char ** &s_arr,int* &len_arr) int fec_decode_manager_t::output(int &n, char **&s_arr, int *&len_arr) {
{ if (!ready_for_output) {
if(!ready_for_output)
{
n = -1; n = -1;
s_arr = 0; s_arr = 0;
len_arr = 0; len_arr = 0;
} } else {
else
{
ready_for_output = 0; ready_for_output = 0;
n = output_n; n = output_n;
s_arr = output_s_arr; s_arr = output_s_arr;

View File

@ -23,8 +23,7 @@ extern int header_overhead;
extern int debug_fec_enc; extern int debug_fec_enc;
extern int debug_fec_dec; extern int debug_fec_dec;
struct fec_parameter_t struct fec_parameter_t {
{
int version = 0; int version = 0;
int mtu = default_mtu; int mtu = default_mtu;
int queue_len = 200; int queue_len = 200;
@ -41,24 +40,20 @@ struct fec_parameter_t
int rs_from_str(char *s) // todo inefficient int rs_from_str(char *s) // todo inefficient
{ {
vector<string> str_vec = string_to_vec(s, ","); vector<string> str_vec = string_to_vec(s, ",");
if(str_vec.size()<1) if (str_vec.size() < 1) {
{
mylog(log_warn, "failed to parse [%s]\n", s); mylog(log_warn, "failed to parse [%s]\n", s);
return -1; return -1;
} }
vector<rs_parameter_t> par_vec; vector<rs_parameter_t> par_vec;
for(int i=0;i<(int)str_vec.size();i++) for (int i = 0; i < (int)str_vec.size(); i++) {
{
rs_parameter_t tmp_par; rs_parameter_t tmp_par;
string &tmp_str = str_vec[i]; string &tmp_str = str_vec[i];
int x, y; int x, y;
if(sscanf((char *)tmp_str.c_str(),"%d:%d",&x,&y)!=2) if (sscanf((char *)tmp_str.c_str(), "%d:%d", &x, &y) != 2) {
{
mylog(log_warn, "failed to parse [%s]\n", tmp_str.c_str()); mylog(log_warn, "failed to parse [%s]\n", tmp_str.c_str());
return -1; return -1;
} }
if(x<1||y<0||x+y>max_fec_packet_num) if (x < 1 || y < 0 || x + y > max_fec_packet_num) {
{
mylog(log_warn, "invaild value x=%d y=%d, x should >=1, y should >=0, x +y should <%d\n", x, y, max_fec_packet_num); mylog(log_warn, "invaild value x=%d y=%d, x should >=1, y should >=0, x +y should <%d\n", x, y, max_fec_packet_num);
return -1; return -1;
} }
@ -69,10 +64,8 @@ struct fec_parameter_t
assert(par_vec.size() == str_vec.size()); assert(par_vec.size() == str_vec.size());
int found_problem = 0; int found_problem = 0;
for(int i=1;i<(int)par_vec.size();i++) for (int i = 1; i < (int)par_vec.size(); i++) {
{ if (par_vec[i].x <= par_vec[i - 1].x) {
if(par_vec[i].x<=par_vec[i-1].x)
{
mylog(log_warn, "error in [%s], x in x:y should be in ascend order\n", s); mylog(log_warn, "error in [%s], x in x:y should be in ascend order\n", s);
return -1; return -1;
} }
@ -84,36 +77,29 @@ struct fec_parameter_t
double now_ratio = double(par_vec[i].y) / par_vec[i].x; double now_ratio = double(par_vec[i].y) / par_vec[i].x;
double pre_ratio = double(par_vec[i - 1].y) / par_vec[i - 1].x; double pre_ratio = double(par_vec[i - 1].y) / par_vec[i - 1].x;
if(pre_ratio+0.0001<now_ratio) if (pre_ratio + 0.0001 < now_ratio) {
{ if (found_problem == 0) {
if(found_problem==0)
{
mylog(log_warn, "possible problems: %d/%d<%d/%d", pre_y, pre_x, now_y, now_x); mylog(log_warn, "possible problems: %d/%d<%d/%d", pre_y, pre_x, now_y, now_x);
found_problem = 1; found_problem = 1;
} } else {
else
{
log_bare(log_warn, ", %d/%d<%d/%d", pre_y, pre_x, now_y, now_x); log_bare(log_warn, ", %d/%d<%d/%d", pre_y, pre_x, now_y, now_x);
} }
} }
} }
if(found_problem) if (found_problem) {
{
log_bare(log_warn, " in %s\n", s); log_bare(log_warn, " in %s\n", s);
} }
{ // special treatment for first parameter { // special treatment for first parameter
int x = par_vec[0].x; int x = par_vec[0].x;
int y = par_vec[0].y; int y = par_vec[0].y;
for(int i=1;i<=x;i++) for (int i = 1; i <= x; i++) {
{
rs_par[i - 1].x = i; rs_par[i - 1].x = i;
rs_par[i - 1].y = y; rs_par[i - 1].y = y;
} }
} }
for(int i=1;i<(int)par_vec.size();i++) for (int i = 1; i < (int)par_vec.size(); i++) {
{
int now_x = par_vec[i].x; int now_x = par_vec[i].x;
int now_y = par_vec[i].y; int now_y = par_vec[i].y;
int pre_x = par_vec[i - 1].x; int pre_x = par_vec[i - 1].x;
@ -125,8 +111,7 @@ struct fec_parameter_t
double pre_ratio = double(par_vec[i - 1].y) / par_vec[i - 1].x; double pre_ratio = double(par_vec[i - 1].y) / par_vec[i - 1].x;
// double k= double(now_y-pre_y)/double(now_x-pre_x); // double k= double(now_y-pre_y)/double(now_x-pre_x);
for(int j=pre_x+1;j<=now_x-1;j++) for (int j = pre_x + 1; j <= now_x - 1; j++) {
{
int in_x = j; int in_x = j;
//////// int in_y= double(pre_y) + double(in_x-pre_x)*k+ 0.9999;// round to upper //////// int in_y= double(pre_y) + double(in_x-pre_x)*k+ 0.9999;// round to upper
@ -136,8 +121,7 @@ struct fec_parameter_t
////// int in_y= in_x*in_ratio + 0.9999; ////// int in_y= in_x*in_ratio + 0.9999;
int in_y = pre_y + (now_y - pre_y) * (in_x - pre_x) / distance + 0.9999; int in_y = pre_y + (now_y - pre_y) * (in_x - pre_x) / distance + 0.9999;
if(in_x+in_y>max_fec_packet_num) if (in_x + in_y > max_fec_packet_num) {
{
in_y = max_fec_packet_num - in_x; in_y = max_fec_packet_num - in_x;
assert(in_y >= 0 && in_y <= max_fec_packet_num); assert(in_y >= 0 && in_y <= max_fec_packet_num);
} }
@ -157,8 +141,7 @@ struct fec_parameter_t
string tmp_string; string tmp_string;
char tmp_buf[100]; char tmp_buf[100];
assert(rs_cnt >= 1); assert(rs_cnt >= 1);
for(int i=0;i<rs_cnt;i++) for (int i = 0; i < rs_cnt; i++) {
{
sprintf(tmp_buf, "%d:%d", int(rs_par[i].x), int(rs_par[i].y)); sprintf(tmp_buf, "%d:%d", int(rs_par[i].x), int(rs_par[i].y));
if (i != 0) if (i != 0)
tmp_string += ","; tmp_string += ",";
@ -168,15 +151,12 @@ struct fec_parameter_t
return res; return res;
} }
rs_parameter_t get_tail() rs_parameter_t get_tail() {
{
assert(rs_cnt >= 1); assert(rs_cnt >= 1);
return rs_par[rs_cnt - 1]; return rs_par[rs_cnt - 1];
} }
int clone(fec_parameter_t &other) {
int clone(fec_parameter_t & other)
{
version = other.version; version = other.version;
mtu = other.mtu; mtu = other.mtu;
queue_len = other.queue_len; queue_len = other.queue_len;
@ -190,8 +170,7 @@ struct fec_parameter_t
return 0; return 0;
} }
int copy_fec(fec_parameter_t & other) int copy_fec(fec_parameter_t &other) {
{
assert(other.rs_cnt >= 1); assert(other.rs_cnt >= 1);
rs_cnt = other.rs_cnt; rs_cnt = other.rs_cnt;
memcpy(rs_par, other.rs_par, sizeof(rs_parameter_t) * rs_cnt); memcpy(rs_par, other.rs_par, sizeof(rs_parameter_t) * rs_cnt);
@ -205,11 +184,8 @@ extern fec_parameter_t g_fec_par;
const int anti_replay_timeout = 120 * 1000; // 120s const int anti_replay_timeout = 120 * 1000; // 120s
struct anti_replay_t struct anti_replay_t {
{ struct info_t {
struct info_t
{
my_time_t my_time; my_time_t my_time;
int index; int index;
}; };
@ -217,30 +193,24 @@ struct anti_replay_t
u64_t replay_buffer[anti_replay_buff_size]; u64_t replay_buffer[anti_replay_buff_size];
unordered_map<u32_t, info_t> mp; unordered_map<u32_t, info_t> mp;
int index; int index;
anti_replay_t() anti_replay_t() {
{
clear(); clear();
} }
int clear() int clear() {
{
memset(replay_buffer, -1, sizeof(replay_buffer)); memset(replay_buffer, -1, sizeof(replay_buffer));
mp.clear(); mp.clear();
mp.rehash(anti_replay_buff_size * 3); mp.rehash(anti_replay_buff_size * 3);
index = 0; index = 0;
return 0; return 0;
} }
void set_invaild(u32_t seq) void set_invaild(u32_t seq) {
{ if (is_vaild(seq) == 0) {
if(is_vaild(seq)==0)
{
mylog(log_trace, "seq %u exist\n", seq); mylog(log_trace, "seq %u exist\n", seq);
// assert(mp.find(seq)!=mp.end()); // assert(mp.find(seq)!=mp.end());
// mp[seq].my_time=get_current_time_rough(); // mp[seq].my_time=get_current_time_rough();
return; return;
} }
if(replay_buffer[index]!=u64_t(i64_t(-1))) if (replay_buffer[index] != u64_t(i64_t(-1))) {
{
assert(mp.find(replay_buffer[index]) != mp.end()); assert(mp.find(replay_buffer[index]) != mp.end());
mp.erase(replay_buffer[index]); mp.erase(replay_buffer[index]);
} }
@ -251,12 +221,10 @@ struct anti_replay_t
index++; index++;
if (index == int(anti_replay_buff_size)) index = 0; if (index == int(anti_replay_buff_size)) index = 0;
} }
int is_vaild(u32_t seq) int is_vaild(u32_t seq) {
{
if (mp.find(seq) == mp.end()) return 1; if (mp.find(seq) == mp.end()) return 1;
if(get_current_time()-mp[seq].my_time>anti_replay_timeout) if (get_current_time() - mp[seq].my_time > anti_replay_timeout) {
{
replay_buffer[mp[seq].index] = u64_t(i64_t(-1)); replay_buffer[mp[seq].index] = u64_t(i64_t(-1));
mp.erase(seq); mp.erase(seq);
return 1; return 1;
@ -266,8 +234,7 @@ struct anti_replay_t
} }
}; };
struct blob_encode_t struct blob_encode_t {
{
char input_buf[(max_fec_packet_num + 5) * buf_len]; char input_buf[(max_fec_packet_num + 5) * buf_len];
int current_len; int current_len;
int counter; int counter;
@ -286,8 +253,7 @@ struct blob_encode_t
int output(int n, char **&s_arr, int &len); int output(int n, char **&s_arr, int &len);
}; };
struct blob_decode_t struct blob_decode_t {
{
char input_buf[(max_fec_packet_num + 5) * buf_len]; char input_buf[(max_fec_packet_num + 5) * buf_len];
int current_len; int current_len;
int last_len; int last_len;
@ -302,9 +268,7 @@ struct blob_decode_t
int output(int &n, char **&output, int *&len_arr); int output(int &n, char **&output, int *&len_arr);
}; };
class fec_encode_manager_t:not_copy_able_t class fec_encode_manager_t : not_copy_able_t {
{
private: private:
u32_t seq; u32_t seq;
@ -315,11 +279,9 @@ private:
// int fec_timeout; // int fec_timeout;
fec_parameter_t fec_par; fec_parameter_t fec_par;
my_time_t first_packet_time; my_time_t first_packet_time;
my_time_t first_packet_time_for_output; my_time_t first_packet_time_for_output;
blob_encode_t blob_encode; blob_encode_t blob_encode;
char input_buf[max_fec_packet_num + 5][buf_len]; char input_buf[max_fec_packet_num + 5][buf_len];
int input_len[max_fec_packet_num + 100]; int input_len[max_fec_packet_num + 100];
@ -344,46 +306,37 @@ public:
fec_encode_manager_t(); fec_encode_manager_t();
~fec_encode_manager_t(); ~fec_encode_manager_t();
fec_parameter_t & get_fec_par() fec_parameter_t &get_fec_par() {
{
return fec_par; return fec_par;
} }
void set_data(void * data) void set_data(void *data) {
{
timer.data = data; timer.data = data;
} }
void set_loop_and_cb(struct ev_loop *loop, void (*cb)(struct ev_loop *loop, struct ev_timer *watcher, int revents)) {
void set_loop_and_cb(struct ev_loop *loop,void (*cb) (struct ev_loop *loop, struct ev_timer *watcher, int revents))
{
this->loop = loop; this->loop = loop;
this->cb = cb; this->cb = cb;
ev_init(&timer, cb); ev_init(&timer, cb);
} }
int clear_data() int clear_data() {
{
counter = 0; counter = 0;
blob_encode.clear(); blob_encode.clear();
ready_for_output = 0; ready_for_output = 0;
seq = (u32_t)get_fake_random_number(); // TODO temp solution for a bug. seq = (u32_t)get_fake_random_number(); // TODO temp solution for a bug.
if(loop) if (loop) {
{
ev_timer_stop(loop, &timer); ev_timer_stop(loop, &timer);
} }
return 0; return 0;
} }
int clear_all() int clear_all() {
{
// itimerspec zero_its; // itimerspec zero_its;
// memset(&zero_its, 0, sizeof(zero_its)); // memset(&zero_its, 0, sizeof(zero_its));
// timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0); // timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0);
if(loop) if (loop) {
{
ev_timer_stop(loop, &timer); ev_timer_stop(loop, &timer);
loop = 0; loop = 0;
cb = 0; cb = 0;
@ -394,18 +347,15 @@ public:
return 0; return 0;
} }
my_time_t get_first_packet_time() my_time_t get_first_packet_time() {
{
return first_packet_time_for_output; return first_packet_time_for_output;
} }
int get_pending_time() int get_pending_time() {
{
return fec_par.timeout; return fec_par.timeout;
} }
int get_type() int get_type() {
{
return fec_par.mode; return fec_par.mode;
} }
// u64_t get_timer_fd64(); // u64_t get_timer_fd64();
@ -413,8 +363,7 @@ public:
int input(char *s, int len /*,int &is_first_packet*/); int input(char *s, int len /*,int &is_first_packet*/);
int output(int &n, char **&s_arr, int *&len); int output(int &n, char **&s_arr, int *&len);
}; };
struct fec_data_t struct fec_data_t {
{
int used; int used;
u32_t seq; u32_t seq;
int type; int type;
@ -424,8 +373,7 @@ struct fec_data_t
char buf[buf_len]; char buf[buf_len];
int len; int len;
}; };
struct fec_group_t struct fec_group_t {
{
int type = -1; int type = -1;
int data_num = -1; int data_num = -1;
int redundant_num = -1; int redundant_num = -1;
@ -434,8 +382,7 @@ struct fec_group_t
// int data_counter=0; // int data_counter=0;
map<int, int> group_mp; map<int, int> group_mp;
}; };
class fec_decode_manager_t:not_copy_able_t class fec_decode_manager_t : not_copy_able_t {
{
anti_replay_t anti_replay; anti_replay_t anti_replay;
fec_data_t *fec_data = 0; fec_data_t *fec_data = 0;
unordered_map<u32_t, fec_group_t> mp; unordered_map<u32_t, fec_group_t> mp;
@ -452,8 +399,7 @@ class fec_decode_manager_t:not_copy_able_t
int output_len_arr_buf[max_fec_packet_num + 100]; // same int output_len_arr_buf[max_fec_packet_num + 100]; // same
public: public:
fec_decode_manager_t() fec_decode_manager_t() {
{
fec_data = new fec_data_t[fec_buff_num + 5]; fec_data = new fec_data_t[fec_buff_num + 5];
assert(fec_data != 0); assert(fec_data != 0);
clear(); clear();
@ -463,17 +409,14 @@ public:
{ {
assert(0==1);//not allowed to copy assert(0==1);//not allowed to copy
}*/ }*/
~fec_decode_manager_t() ~fec_decode_manager_t() {
{
mylog(log_debug, "fec_decode_manager destroyed\n"); mylog(log_debug, "fec_decode_manager destroyed\n");
if(fec_data!=0) if (fec_data != 0) {
{
mylog(log_debug, "fec_data freed\n"); mylog(log_debug, "fec_data freed\n");
delete fec_data; delete fec_data;
} }
} }
int clear() int clear() {
{
anti_replay.clear(); anti_replay.clear();
mp.clear(); mp.clear();
mp.rehash(fec_buff_num * 3); mp.rehash(fec_buff_num * 3);

View File

@ -8,35 +8,29 @@
#include "stdlib.h" #include "stdlib.h"
#include "string.h" #include "string.h"
void rs_encode(void *code,char *data[],int size) void rs_encode(void *code, char *data[], int size) {
{
int k = get_k(code); int k = get_k(code);
int n = get_n(code); int n = get_n(code);
for(int i=k;i<n;i++) for (int i = k; i < n; i++) {
{
fec_encode(code, (void **)data, data[i], i, size); fec_encode(code, (void **)data, data[i], i, size);
} }
return; return;
} }
int rs_decode(void *code,char *data[],int size) int rs_decode(void *code, char *data[], int size) {
{
int k = get_k(code); int k = get_k(code);
int n = get_n(code); int n = get_n(code);
int index[n]; int index[n];
int count = 0; int count = 0;
for(int i=0;i<n;i++) for (int i = 0; i < n; i++) {
{ if (data[i] != 0) {
if(data[i]!=0)
{
index[count++] = i; index[count++] = i;
} }
} }
if (count < k) if (count < k)
return -1; return -1;
for(int i=0;i<n;i++) for (int i = 0; i < n; i++) {
{
if (i < count) if (i < count)
data[i] = data[index[i]]; data[i] = data[index[i]];
else else
@ -46,31 +40,25 @@ int rs_decode(void *code,char *data[],int size)
} }
static void *(*table)[256] = 0; static void *(*table)[256] = 0;
void* get_code(int k,int n) void *get_code(int k, int n) {
{ if (table == 0) {
if (table==0)
{
table = (void *(*)[256])malloc(sizeof(void *) * 256 * 256); table = (void *(*)[256])malloc(sizeof(void *) * 256 * 256);
if(!table) if (!table) {
{
return table; return table;
} }
memset(table, 0, sizeof(void *) * 256 * 256); memset(table, 0, sizeof(void *) * 256 * 256);
} }
if(table[k][n]==0) if (table[k][n] == 0) {
{
table[k][n] = fec_new(k, n); table[k][n] = fec_new(k, n);
} }
return table[k][n]; return table[k][n];
} }
void rs_encode2(int k,int n,char *data[],int size) void rs_encode2(int k, int n, char *data[], int size) {
{
void *code = get_code(k, n); void *code = get_code(k, n);
rs_encode(code, data, size); rs_encode(code, data, size);
} }
int rs_decode2(int k,int n,char *data[],int size) int rs_decode2(int k, int n, char *data[], int size) {
{
void *code = get_code(k, n); void *code = get_code(k, n);
return rs_decode(code, data, size); return rs_decode(code, data, size);
} }

View File

@ -22,7 +22,6 @@
// the function will always succeed,except malloc fail.if malloc fail,it will call exit() // the function will always succeed,except malloc fail.if malloc fail,it will call exit()
void rs_encode(void *code, char *data[], int size); void rs_encode(void *code, char *data[], int size);
// input: // input:
// data[0.....n-1] points to original data and redundate data,in right order // data[0.....n-1] points to original data and redundate data,in right order
// if data[i] is missing ,set poniter data[i] to 0 (point it to null) // if data[i] is missing ,set poniter data[i] to 0 (point it to null)
@ -39,13 +38,8 @@ void rs_encode(void *code,char *data[],int size);
// 2. if the input data[0.....n-1] contains x non-zero pointers,after called rs_decode,there will still be exactly x non-zero poninters in data[0.....n-1],just the order may change. // 2. if the input data[0.....n-1] contains x non-zero pointers,after called rs_decode,there will still be exactly x non-zero poninters in data[0.....n-1],just the order may change.
int rs_decode(void *code, char *data[], int size); int rs_decode(void *code, char *data[], int size);
void rs_encode2(int k, int n, char *data[], int size); void rs_encode2(int k, int n, char *data[], int size);
int rs_decode2(int k, int n, char *data[], int size); int rs_decode2(int k, int n, char *data[], int size);
#endif /* LIB_RS_H_ */ #endif /* LIB_RS_H_ */

10
log.cpp Executable file → Normal file
View File

@ -6,13 +6,10 @@ int log_level=log_info;
int enable_log_position = 0; int enable_log_position = 0;
int enable_log_color = 1; int enable_log_color = 1;
void log0(const char* file, const char* function, int line, int level, const char* str, ...) { void log0(const char* file, const char* function, int line, int level, const char* str, ...) {
if (level > log_level) return; if (level > log_level) return;
if (level > log_trace || level < 0) return; if (level > log_trace || level < 0) return;
time_t timer; time_t timer;
char buffer[100]; char buffer[100];
struct tm* tm_info; struct tm* tm_info;
@ -40,14 +37,12 @@ void log0(const char * file,const char * function,int line,int level,const char*
// printf(log_color[level]); // printf(log_color[level]);
fflush(stdout); fflush(stdout);
if(log_level==log_fatal) if (log_level == log_fatal) {
{
about_to_exit = 1; about_to_exit = 1;
} }
} }
void log_bare(int level,const char* str, ...) void log_bare(int level, const char* str, ...) {
{
if (level > log_level) return; if (level > log_level) return;
if (level > log_trace || level < 0) return; if (level > log_trace || level < 0) return;
if (enable_log_color) if (enable_log_color)
@ -59,5 +54,4 @@ void log_bare(int level,const char* str, ...)
if (enable_log_color) if (enable_log_color)
printf("%s", RESET); printf("%s", RESET);
fflush(stdout); fflush(stdout);
} }

6
log.h Executable file → Normal file
View File

@ -2,7 +2,6 @@
#ifndef _LOG_MYLOG_H_ #ifndef _LOG_MYLOG_H_
#define _LOG_MYLOG_H_ #define _LOG_MYLOG_H_
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <stdlib.h> #include <stdlib.h>
@ -15,7 +14,6 @@
using namespace std; using namespace std;
#define RED "\x1B[31m" #define RED "\x1B[31m"
#define GRN "\x1B[32m" #define GRN "\x1B[32m"
#define YEL "\x1B[33m" #define YEL "\x1B[33m"
@ -25,7 +23,6 @@ using namespace std;
#define WHT "\x1B[37m" #define WHT "\x1B[37m"
#define RESET "\x1B[0m" #define RESET "\x1B[0m"
const int log_never = 0; const int log_never = 0;
const int log_fatal = 1; const int log_fatal = 1;
const int log_error = 2; const int log_error = 2;
@ -42,7 +39,6 @@ extern int log_level;
extern int enable_log_position; extern int enable_log_position;
extern int enable_log_color; extern int enable_log_color;
#ifdef MY_DEBUG #ifdef MY_DEBUG
#define mylog(__first_argu__dummy_abcde__, ...) printf(__VA_ARGS__) #define mylog(__first_argu__dummy_abcde__, ...) printf(__VA_ARGS__)
@ -50,12 +46,10 @@ extern int enable_log_color;
#define mylog(...) log0(__FILE__, __FUNCTION__, __LINE__, __VA_ARGS__) #define mylog(...) log0(__FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#endif #endif
//#define mylog(__first_argu__dummy_abcde__,...) {;} //#define mylog(__first_argu__dummy_abcde__,...) {;}
void log0(const char* file, const char* function, int line, int level, const char* str, ...); void log0(const char* file, const char* function, int line, int level, const char* str, ...);
void log_bare(int level, const char* str, ...); void log_bare(int level, const char* str, ...);
#endif #endif

View File

@ -13,9 +13,7 @@
#include "git_version.h" #include "git_version.h"
using namespace std; using namespace std;
static void print_help() {
static void print_help()
{
char git_version_buf[100] = {0}; char git_version_buf[100] = {0};
strncpy(git_version_buf, gitversion, 10); strncpy(git_version_buf, gitversion, 10);
@ -80,28 +78,21 @@ static void print_help()
// printf("common options,these options must be same on both side\n"); // printf("common options,these options must be same on both side\n");
} }
void sigpipe_cb(struct ev_loop *l, ev_signal *w, int revents) {
void sigpipe_cb(struct ev_loop *l, ev_signal *w, int revents)
{
mylog(log_info, "got sigpipe, ignored"); mylog(log_info, "got sigpipe, ignored");
} }
void sigterm_cb(struct ev_loop *l, ev_signal *w, int revents) void sigterm_cb(struct ev_loop *l, ev_signal *w, int revents) {
{
mylog(log_info, "got sigterm, exit"); mylog(log_info, "got sigterm, exit");
myexit(0); myexit(0);
} }
void sigint_cb(struct ev_loop *l, ev_signal *w, int revents) void sigint_cb(struct ev_loop *l, ev_signal *w, int revents) {
{
mylog(log_info, "got sigint, exit"); mylog(log_info, "got sigint, exit");
myexit(0); myexit(0);
} }
int main(int argc, char *argv[]) {
int main(int argc, char *argv[])
{
working_mode = tunnel_mode; working_mode = tunnel_mode;
init_ws(); init_ws();
// unit_test(); // unit_test();
@ -132,15 +123,12 @@ int main(int argc, char *argv[])
dup2(1, 2); // redirect stderr to stdout dup2(1, 2); // redirect stderr to stdout
int i, j, k; int i, j, k;
if (argc == 1) if (argc == 1) {
{
print_help(); print_help();
myexit(-1); myexit(-1);
} }
for (i = 0; i < argc; i++) for (i = 0; i < argc; i++) {
{ if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
if(strcmp(argv[i],"-h")==0||strcmp(argv[i],"--help")==0)
{
print_help(); print_help();
myexit(0); myexit(0);
} }
@ -150,20 +138,15 @@ int main(int argc, char *argv[])
delay_manager.set_capacity(delay_capacity); delay_manager.set_capacity(delay_capacity);
if(strlen(tun_dev)==0) if (strlen(tun_dev) == 0) {
{
sprintf(tun_dev, "tun%u", get_fake_random_number() % 1000); sprintf(tun_dev, "tun%u", get_fake_random_number() % 1000);
} }
if(program_mode==client_mode) if (program_mode == client_mode) {
{
tunnel_client_event_loop(); tunnel_client_event_loop();
} } else {
else
{
tunnel_server_event_loop(); tunnel_server_event_loop();
} }
return 0; return 0;
} }

474
misc.cpp

File diff suppressed because it is too large Load Diff

5
misc.h
View File

@ -14,8 +14,6 @@
#include "delay_manager.h" #include "delay_manager.h"
#include "fec_manager.h" #include "fec_manager.h"
extern char fifo_file[1000]; extern char fifo_file[1000];
extern int mtu_warn; extern int mtu_warn;
@ -26,7 +24,6 @@ extern int disable_checksum;
extern int debug_force_flush_fec; extern int debug_force_flush_fec;
extern int jitter_min; extern int jitter_min;
extern int jitter_max; extern int jitter_max;
@ -39,7 +36,6 @@ extern int fix_latency;
// extern char local_ip[100], remote_ip[100]; // extern char local_ip[100], remote_ip[100];
// extern int local_port, remote_port; // extern int local_port, remote_port;
extern address_t local_addr, remote_addr; extern address_t local_addr, remote_addr;
extern address_t *out_addr; extern address_t *out_addr;
@ -62,7 +58,6 @@ extern int mssfix;
extern int manual_set_tun; extern int manual_set_tun;
extern int persist_tun; extern int persist_tun;
int from_normal_to_fec(conn_info_t &conn_info, char *data, int len, int &out_n, char **&out_arr, int *&out_len, my_time_t *&out_delay); int from_normal_to_fec(conn_info_t &conn_info, char *data, int len, int &out_n, char **&out_arr, int *&out_len, my_time_t *&out_delay);
int from_fec_to_normal(conn_info_t &conn_info, char *data, int len, int &out_n, char **&out_arr, int *&out_len, my_time_t *&out_delay); int from_fec_to_normal(conn_info_t &conn_info, char *data, int len, int &out_n, char **&out_arr, int *&out_len, my_time_t *&out_delay);

View File

@ -2,4 +2,3 @@
#include "my_ev_common.h" #include "my_ev_common.h"
#include "ev.h" #include "ev.h"

View File

@ -1,6 +1,8 @@
#define EV_STANDALONE 1 #define EV_STANDALONE 1
#define EV_COMMON void *data; unsigned long long u64; #define EV_COMMON \
void *data; \
unsigned long long u64;
#define EV_COMPAT3 0 #define EV_COMPAT3 0
//#define EV_VERIFY 2 //#define EV_VERIFY 2

View File

@ -5,7 +5,6 @@
* Author: root * Author: root
*/ */
#include "common.h" #include "common.h"
#include "log.h" #include "log.h"
#include "packet.h" #include "packet.h"
@ -30,30 +29,24 @@ char key_string[1000]= "";
// int local_listen_fd=-1; // int local_listen_fd=-1;
void encrypt_0(char *input, int &len, char *key) {
void encrypt_0(char * input,int &len,char *key)
{
int i, j; int i, j;
if (key[0] == 0) return; if (key[0] == 0) return;
for(i=0,j=0;i<len;i++,j++) for (i = 0, j = 0; i < len; i++, j++) {
{
if (key[j] == 0) j = 0; if (key[j] == 0) j = 0;
input[i] ^= key[j]; input[i] ^= key[j];
} }
} }
void decrypt_0(char * input,int &len,char *key) void decrypt_0(char *input, int &len, char *key) {
{
int i, j; int i, j;
if (key[0] == 0) return; if (key[0] == 0) return;
for(i=0,j=0;i<len;i++,j++) for (i = 0, j = 0; i < len; i++, j++) {
{
if (key[j] == 0) j = 0; if (key[j] == 0) j = 0;
input[i] ^= key[j]; input[i] ^= key[j];
} }
} }
int do_obscure_old(const char * input, int in_len,char *output,int &out_len) int do_obscure_old(const char *input, int in_len, char *output, int &out_len) {
{
// memcpy(output,input,in_len); // memcpy(output,input,in_len);
// out_len=in_len; // out_len=in_len;
// return 0; // return 0;
@ -70,29 +63,25 @@ int do_obscure_old(const char * input, int in_len,char *output,int &out_len)
output[iv_len + in_len] ^= output[0]; output[iv_len + in_len] ^= output[0];
output[iv_len + in_len] ^= key_string[0]; output[iv_len + in_len] ^= key_string[0];
for(i=0,j=0,k=1;i<in_len;i++,j++,k++) for (i = 0, j = 0, k = 1; i < in_len; i++, j++, k++) {
{
if (j == iv_len) j = 0; if (j == iv_len) j = 0;
if (key_string[k] == 0) k = 0; if (key_string[k] == 0) k = 0;
output[iv_len + i] ^= output[j]; output[iv_len + i] ^= output[j];
output[iv_len + i] ^= key_string[k]; output[iv_len + i] ^= key_string[k];
} }
out_len = iv_len + in_len + 1; out_len = iv_len + in_len + 1;
return 0; return 0;
} }
int do_obscure(char * data,int &len) int do_obscure(char *data, int &len) {
{
assert(len >= 0); assert(len >= 0);
assert(len < buf_len); assert(len < buf_len);
int iv_len = random_between(iv_min, iv_max); int iv_len = random_between(iv_min, iv_max);
get_fake_random_chars(data + len, iv_len); get_fake_random_chars(data + len, iv_len);
data[iv_len + len] = (uint8_t)iv_len; data[iv_len + len] = (uint8_t)iv_len;
for(int i=0,j=0;i<len;i++,j++) for (int i = 0, j = 0; i < len; i++, j++) {
{
if (j == iv_len) j = 0; if (j == iv_len) j = 0;
data[i] ^= data[len + j]; data[i] ^= data[len + j];
} }
@ -101,47 +90,40 @@ int do_obscure(char * data,int &len)
return 0; return 0;
} }
int de_obscure(char * data,int &len) int de_obscure(char *data, int &len) {
{
if (len < 1) return -1; if (len < 1) return -1;
int iv_len = int((uint8_t)data[len - 1]); int iv_len = int((uint8_t)data[len - 1]);
if (len < 1 + iv_len) return -1; if (len < 1 + iv_len) return -1;
len = len - 1 - iv_len; len = len - 1 - iv_len;
for(int i=0,j=0;i<len;i++,j++) for (int i = 0, j = 0; i < len; i++, j++) {
{
if (j == iv_len) j = 0; if (j == iv_len) j = 0;
data[i] ^= data[len + j]; data[i] ^= data[len + j];
} }
return 0; return 0;
} }
int de_obscure_old(const char * input, int in_len,char *output,int &out_len) int de_obscure_old(const char *input, int in_len, char *output, int &out_len) {
{
// memcpy(output,input,in_len); // memcpy(output,input,in_len);
// out_len=in_len; // out_len=in_len;
// return 0; // return 0;
int i, j, k; int i, j, k;
if (in_len > 65535||in_len<0) if (in_len > 65535 || in_len < 0) {
{
mylog(log_debug, "in_len > 65535||in_len<0 , %d", in_len); mylog(log_debug, "in_len > 65535||in_len<0 , %d", in_len);
return -1; return -1;
} }
int iv_len = int((uint8_t)(input[in_len - 1] ^ input[0] ^ key_string[0])); int iv_len = int((uint8_t)(input[in_len - 1] ^ input[0] ^ key_string[0]));
out_len = in_len - 1 - iv_len; out_len = in_len - 1 - iv_len;
if(out_len<0) if (out_len < 0) {
{
mylog(log_debug, "%d %d\n", in_len, out_len); mylog(log_debug, "%d %d\n", in_len, out_len);
return -1; return -1;
} }
for(i=0,j=0,k=1;i<in_len;i++,j++,k++) for (i = 0, j = 0, k = 1; i < in_len; i++, j++, k++) {
{
if (j == iv_len) j = 0; if (j == iv_len) j = 0;
if (key_string[k] == 0) k = 0; if (key_string[k] == 0) k = 0;
output[i] = input[iv_len + i] ^ input[j] ^ key_string[k]; output[i] = input[iv_len + i] ^ input[j] ^ key_string[k];
} }
dup_packet_recv_count++; dup_packet_recv_count++;
return 0; return 0;
@ -164,9 +146,7 @@ int sendto_fd_ip_port (int fd,u32_t ip,int port,char * buf, int len,int flags)
sizeof(tmp_sockaddr)); sizeof(tmp_sockaddr));
}*/ }*/
int sendto_fd_addr (int fd,address_t addr,char * buf, int len,int flags) int sendto_fd_addr(int fd, address_t addr, char *buf, int len, int flags) {
{
return sendto(fd, buf, return sendto(fd, buf,
len, 0, len, 0,
(struct sockaddr *)&addr.inner, (struct sockaddr *)&addr.inner,
@ -178,45 +158,35 @@ int sendto_ip_port (u32_t ip,int port,char * buf, int len,int flags)
return sendto_fd_ip_port(local_listen_fd,ip,port,buf,len,flags); return sendto_fd_ip_port(local_listen_fd,ip,port,buf,len,flags);
}*/ }*/
int send_fd (int fd,char * buf, int len,int flags) int send_fd(int fd, char *buf, int len, int flags) {
{
return send(fd, buf, len, flags); return send(fd, buf, len, flags);
} }
int my_send(const dest_t &dest,char *data,int len) int my_send(const dest_t &dest, char *data, int len) {
{ if (dest.cook) {
if(dest.cook)
{
do_cook(data, len); do_cook(data, len);
} }
switch(dest.type) switch (dest.type) {
{ case type_fd_addr: {
case type_fd_addr:
{
return sendto_fd_addr(dest.inner.fd, dest.inner.fd_addr.addr, data, len, 0); return sendto_fd_addr(dest.inner.fd, dest.inner.fd_addr.addr, data, len, 0);
break; break;
} }
case type_fd64_addr: case type_fd64_addr: {
{
if (!fd_manager.exist(dest.inner.fd64)) return -1; if (!fd_manager.exist(dest.inner.fd64)) return -1;
int fd = fd_manager.to_fd(dest.inner.fd64); int fd = fd_manager.to_fd(dest.inner.fd64);
return sendto_fd_addr(fd, dest.inner.fd64_addr.addr, data, len, 0); return sendto_fd_addr(fd, dest.inner.fd64_addr.addr, data, len, 0);
break; break;
} }
case type_fd: case type_fd: {
{
return send_fd(dest.inner.fd, data, len, 0); return send_fd(dest.inner.fd, data, len, 0);
break; break;
} }
case type_write_fd: case type_write_fd: {
{
return write(dest.inner.fd, data, len); return write(dest.inner.fd, data, len);
break; break;
} }
case type_fd64: case type_fd64: {
{
if (!fd_manager.exist(dest.inner.fd64)) return -1; if (!fd_manager.exist(dest.inner.fd64)) return -1;
int fd = fd_manager.to_fd(dest.inner.fd64); int fd = fd_manager.to_fd(dest.inner.fd64);
@ -286,8 +256,7 @@ unsigned int crc32h(unsigned char *message,int len) {
return ~crc; return ~crc;
} }
int put_conv0(u32_t conv,const char * input,int len_in,char *&output,int &len_out) int put_conv0(u32_t conv, const char *input, int len_in, char *&output, int &len_out) {
{
assert(len_in >= 0); assert(len_in >= 0);
static char buf[buf_len]; static char buf[buf_len];
output = buf; output = buf;
@ -300,8 +269,7 @@ int put_conv0(u32_t conv,const char * input,int len_in,char *&output,int &len_ou
memcpy(output + len_in + (int)(sizeof(n_conv)), &crc32_n, sizeof(crc32_n)); memcpy(output + len_in + (int)(sizeof(n_conv)), &crc32_n, sizeof(crc32_n));
return 0; return 0;
} }
int get_conv0(u32_t &conv,const char *input,int len_in,char *&output,int &len_out ) int get_conv0(u32_t &conv, const char *input, int len_in, char *&output, int &len_out) {
{
assert(len_in >= 0); assert(len_in >= 0);
u32_t n_conv; u32_t n_conv;
memcpy(&n_conv, input, sizeof(n_conv)); memcpy(&n_conv, input, sizeof(n_conv));
@ -309,22 +277,19 @@ int get_conv0(u32_t &conv,const char *input,int len_in,char *&output,int &len_ou
output = (char *)input + sizeof(n_conv); output = (char *)input + sizeof(n_conv);
u32_t crc32_n; u32_t crc32_n;
len_out = len_in - (int)sizeof(n_conv) - (int)sizeof(crc32_n); len_out = len_in - (int)sizeof(n_conv) - (int)sizeof(crc32_n);
if(len_out<0) if (len_out < 0) {
{
mylog(log_debug, "len_out<0\n"); mylog(log_debug, "len_out<0\n");
return -1; return -1;
} }
memcpy(&crc32_n, input + len_in - (int)sizeof(crc32_n), sizeof(crc32_n)); memcpy(&crc32_n, input + len_in - (int)sizeof(crc32_n), sizeof(crc32_n));
u32_t crc32 = ntohl(crc32_n); u32_t crc32 = ntohl(crc32_n);
if(crc32!=crc32h((unsigned char *)input,len_in-(int)sizeof(crc32_n))) if (crc32 != crc32h((unsigned char *)input, len_in - (int)sizeof(crc32_n))) {
{
mylog(log_debug, "crc32 check failed\n"); mylog(log_debug, "crc32 check failed\n");
return -1; return -1;
} }
return 0; return 0;
} }
int put_crc32(char * s,int &len) int put_crc32(char *s, int &len) {
{
if (disable_checksum) return 0; if (disable_checksum) return 0;
assert(len >= 0); assert(len >= 0);
// if(len<0) return -1; // if(len<0) return -1;
@ -332,40 +297,33 @@ int put_crc32(char * s,int &len)
write_u32(s + len, crc32); write_u32(s + len, crc32);
len += sizeof(u32_t); len += sizeof(u32_t);
return 0; return 0;
} }
int do_cook(char * data,int &len) int do_cook(char *data, int &len) {
{
put_crc32(data, len); put_crc32(data, len);
if (!disable_obscure) do_obscure(data, len); if (!disable_obscure) do_obscure(data, len);
if (!disable_xor) encrypt_0(data, len, key_string); if (!disable_xor) encrypt_0(data, len, key_string);
return 0; return 0;
} }
int de_cook(char * s,int &len) int de_cook(char *s, int &len) {
{
if (!disable_xor) decrypt_0(s, len, key_string); if (!disable_xor) decrypt_0(s, len, key_string);
if(!disable_obscure) if (!disable_obscure) {
{
int ret = de_obscure(s, len); int ret = de_obscure(s, len);
if(ret!=0) if (ret != 0) {
{
mylog(log_debug, "de_obscure fail\n"); mylog(log_debug, "de_obscure fail\n");
return ret; return ret;
} }
} }
int ret = rm_crc32(s, len); int ret = rm_crc32(s, len);
if(ret!=0) if (ret != 0) {
{
mylog(log_debug, "rm_crc32 fail\n"); mylog(log_debug, "rm_crc32 fail\n");
return ret; return ret;
} }
return 0; return 0;
} }
int rm_crc32(char * s,int &len) int rm_crc32(char *s, int &len) {
{
if (disable_checksum) return 0; if (disable_checksum) return 0;
assert(len >= 0); assert(len >= 0);
len -= sizeof(u32_t); len -= sizeof(u32_t);
@ -381,8 +339,7 @@ int do_obs()
} }
int de_obs()*/ int de_obs()*/
int put_conv(u32_t conv,const char * input,int len_in,char *&output,int &len_out) int put_conv(u32_t conv, const char *input, int len_in, char *&output, int &len_out) {
{
static char buf[buf_len]; static char buf[buf_len];
output = buf; output = buf;
u32_t n_conv = htonl(conv); u32_t n_conv = htonl(conv);
@ -392,20 +349,15 @@ int put_conv(u32_t conv,const char * input,int len_in,char *&output,int &len_out
return 0; return 0;
} }
int get_conv(u32_t &conv,const char *input,int len_in,char *&output,int &len_out ) int get_conv(u32_t &conv, const char *input, int len_in, char *&output, int &len_out) {
{
u32_t n_conv; u32_t n_conv;
memcpy(&n_conv, input, sizeof(n_conv)); memcpy(&n_conv, input, sizeof(n_conv));
conv = ntohl(n_conv); conv = ntohl(n_conv);
output = (char *)input + sizeof(n_conv); output = (char *)input + sizeof(n_conv);
len_out = len_in - (int)sizeof(n_conv); len_out = len_in - (int)sizeof(n_conv);
if(len_out<0) if (len_out < 0) {
{
mylog(log_debug, "len_out<0\n"); mylog(log_debug, "len_out<0\n");
return -1; return -1;
} }
return 0; return 0;
} }

View File

@ -24,7 +24,6 @@ extern int random_drop;
extern int disable_obscure; extern int disable_obscure;
extern int disable_xor; extern int disable_xor;
int my_send(const dest_t &dest, char *data, int len); int my_send(const dest_t &dest, char *data, int len);
void encrypt_0(char *input, int &len, char *key); void encrypt_0(char *input, int &len, char *key);

View File

@ -8,7 +8,6 @@
#ifndef TUNNEL_H_ #ifndef TUNNEL_H_
#define TUNNEL_H_ #define TUNNEL_H_
#include "misc.h" #include "misc.h"
int tunnel_client_event_loop(); int tunnel_client_event_loop();

View File

@ -1,7 +1,6 @@
#include "tunnel.h" #include "tunnel.h"
void data_from_local_or_fec_timeout(conn_info_t & conn_info,int is_time_out) void data_from_local_or_fec_timeout(conn_info_t &conn_info, int is_time_out) {
{
fd64_t &remote_fd64 = conn_info.remote_fd64; fd64_t &remote_fd64 = conn_info.remote_fd64;
int &local_listen_fd = conn_info.local_listen_fd; int &local_listen_fd = conn_info.local_listen_fd;
@ -9,14 +8,16 @@ void data_from_local_or_fec_timeout(conn_info_t & conn_info,int is_time_out)
int data_len; int data_len;
address_t addr; address_t addr;
u32_t conv; u32_t conv;
int out_n;char **out_arr;int *out_len;my_time_t *out_delay; int out_n;
char **out_arr;
int *out_len;
my_time_t *out_delay;
dest_t dest; dest_t dest;
dest.type = type_fd64; dest.type = type_fd64;
dest.inner.fd64 = remote_fd64; dest.inner.fd64 = remote_fd64;
dest.cook = 1; dest.cook = 1;
if(is_time_out) if (is_time_out) {
{
// fd64_t fd64=events[idx].data.u64; // fd64_t fd64=events[idx].data.u64;
mylog(log_trace, "events[idx].data.u64 == conn_info.fec_encode_manager.get_timer_fd64()\n"); mylog(log_trace, "events[idx].data.u64 == conn_info.fec_encode_manager.get_timer_fd64()\n");
@ -38,8 +39,7 @@ void data_from_local_or_fec_timeout(conn_info_t & conn_info,int is_time_out)
// } // }
// assert(value==1); // assert(value==1);
from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay); from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay);
} } else // events[idx].data.u64 == (u64_t)local_listen_fd
else//events[idx].data.u64 == (u64_t)local_listen_fd
{ {
mylog(log_trace, "events[idx].data.u64 == (u64_t)local_listen_fd\n"); mylog(log_trace, "events[idx].data.u64 == (u64_t)local_listen_fd\n");
address_t::storage_t udp_new_addr_in = {0}; address_t::storage_t udp_new_addr_in = {0};
@ -50,37 +50,30 @@ void data_from_local_or_fec_timeout(conn_info_t & conn_info,int is_time_out)
return; return;
}; };
if(data_len==max_data_len+1) if (data_len == max_data_len + 1) {
{
mylog(log_warn, "huge packet from upper level, data_len > %d, packet truncated, dropped\n", max_data_len); mylog(log_warn, "huge packet from upper level, data_len > %d, packet truncated, dropped\n", max_data_len);
return; return;
} }
if(!disable_mtu_warn&&data_len>=mtu_warn) if (!disable_mtu_warn && data_len >= mtu_warn) {
{
mylog(log_warn, "huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn); mylog(log_warn, "huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn);
} }
addr.from_sockaddr((struct sockaddr *)&udp_new_addr_in, udp_new_addr_len); addr.from_sockaddr((struct sockaddr *)&udp_new_addr_in, udp_new_addr_len);
mylog(log_trace, "Received packet from %s, len: %d\n", addr.get_str(), data_len); mylog(log_trace, "Received packet from %s, len: %d\n", addr.get_str(), data_len);
// u64_t u64=ip_port.to_u64(); // u64_t u64=ip_port.to_u64();
if(!conn_info.conv_manager.c.is_data_used(addr)) if (!conn_info.conv_manager.c.is_data_used(addr)) {
{ if (conn_info.conv_manager.c.get_size() >= max_conv_num) {
if(conn_info.conv_manager.c.get_size() >=max_conv_num)
{
mylog(log_warn, "ignored new udp connect bc max_conv_num exceed\n"); mylog(log_warn, "ignored new udp connect bc max_conv_num exceed\n");
return; return;
} }
conv = conn_info.conv_manager.c.get_new_conv(); conv = conn_info.conv_manager.c.get_new_conv();
conn_info.conv_manager.c.insert_conv(conv, addr); conn_info.conv_manager.c.insert_conv(conv, addr);
mylog(log_info, "new packet from %s,conv_id=%x\n", addr.get_str(), conv); mylog(log_info, "new packet from %s,conv_id=%x\n", addr.get_str(), conv);
} } else {
else
{
conv = conn_info.conv_manager.c.find_conv_by_data(addr); conv = conn_info.conv_manager.c.find_conv_by_data(addr);
mylog(log_trace, "conv=%d\n", conv); mylog(log_trace, "conv=%d\n", conv);
} }
@ -89,19 +82,15 @@ void data_from_local_or_fec_timeout(conn_info_t & conn_info,int is_time_out)
int new_len; int new_len;
put_conv(conv, data, data_len, new_data, new_len); put_conv(conv, data, data_len, new_data, new_len);
mylog(log_trace, "data_len=%d new_len=%d\n", data_len, new_len); mylog(log_trace, "data_len=%d new_len=%d\n", data_len, new_len);
from_normal_to_fec(conn_info, new_data, new_len, out_n, out_arr, out_len, out_delay); from_normal_to_fec(conn_info, new_data, new_len, out_n, out_arr, out_len, out_delay);
} }
mylog(log_trace, "out_n=%d\n", out_n); mylog(log_trace, "out_n=%d\n", out_n);
for(int i=0;i<out_n;i++) for (int i = 0; i < out_n; i++) {
{
delay_send(out_delay[i], dest, out_arr[i], out_len[i]); delay_send(out_delay[i], dest, out_arr[i], out_len[i]);
} }
} }
static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
conn_info_t &conn_info = *((conn_info_t *)watcher->data); conn_info_t &conn_info = *((conn_info_t *)watcher->data);
@ -109,8 +98,7 @@ static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int rev
data_from_local_or_fec_timeout(conn_info, 0); data_from_local_or_fec_timeout(conn_info, 0);
} }
static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
conn_info_t &conn_info = *((conn_info_t *)watcher->data); conn_info_t &conn_info = *((conn_info_t *)watcher->data);
@ -130,52 +118,46 @@ static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents)
int data_len = recv(fd, data, max_data_len + 1, 0); int data_len = recv(fd, data, max_data_len + 1, 0);
if(data_len==max_data_len+1) if (data_len == max_data_len + 1) {
{
mylog(log_warn, "huge packet, data_len > %d, packet truncated, dropped\n", max_data_len); mylog(log_warn, "huge packet, data_len > %d, packet truncated, dropped\n", max_data_len);
return; return;
} }
mylog(log_trace, "received data from udp fd %d, len=%d\n", remote_fd, data_len); mylog(log_trace, "received data from udp fd %d, len=%d\n", remote_fd, data_len);
if(data_len<0) if (data_len < 0) {
{ if (get_sock_errno() == ECONNREFUSED) {
if(get_sock_errno()==ECONNREFUSED)
{
mylog(log_debug, "recv failed %d ,udp_fd%d,errno:%s\n", data_len, remote_fd, get_sock_error()); mylog(log_debug, "recv failed %d ,udp_fd%d,errno:%s\n", data_len, remote_fd, get_sock_error());
} }
mylog(log_warn, "recv failed %d ,udp_fd%d,errno:%s\n", data_len, remote_fd, get_sock_error()); mylog(log_warn, "recv failed %d ,udp_fd%d,errno:%s\n", data_len, remote_fd, get_sock_error());
return; return;
} }
if(!disable_mtu_warn&&data_len>mtu_warn) if (!disable_mtu_warn && data_len > mtu_warn) {
{
mylog(log_warn, "huge packet,data len=%d (>%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn); mylog(log_warn, "huge packet,data len=%d (>%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn);
} }
if(de_cook(data,data_len)!=0) if (de_cook(data, data_len) != 0) {
{
mylog(log_debug, "de_cook error"); mylog(log_debug, "de_cook error");
return; return;
} }
int out_n;char **out_arr;int *out_len;my_time_t *out_delay; int out_n;
char **out_arr;
int *out_len;
my_time_t *out_delay;
from_fec_to_normal(conn_info, data, data_len, out_n, out_arr, out_len, out_delay); from_fec_to_normal(conn_info, data, data_len, out_n, out_arr, out_len, out_delay);
mylog(log_trace, "out_n=%d\n", out_n); mylog(log_trace, "out_n=%d\n", out_n);
for(int i=0;i<out_n;i++) for (int i = 0; i < out_n; i++) {
{
u32_t conv; u32_t conv;
char *new_data; char *new_data;
int new_len; int new_len;
if(get_conv(conv,out_arr[i],out_len[i],new_data,new_len)!=0) if (get_conv(conv, out_arr[i], out_len[i], new_data, new_len) != 0) {
{
mylog(log_debug, "get_conv(conv,out_arr[i],out_len[i],new_data,new_len)!=0"); mylog(log_debug, "get_conv(conv,out_arr[i],out_len[i],new_data,new_len)!=0");
continue; continue;
} }
if(!conn_info.conv_manager.c.is_conv_used(conv)) if (!conn_info.conv_manager.c.is_conv_used(conv)) {
{
mylog(log_trace, "!conn_info.conv_manager.is_conv_used(conv)"); mylog(log_trace, "!conn_info.conv_manager.is_conv_used(conv)");
continue; continue;
} }
@ -192,15 +174,13 @@ static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents)
} }
} }
static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
int fifo_fd = watcher->fd; int fifo_fd = watcher->fd;
char buf[buf_len]; char buf[buf_len];
int len = read(fifo_fd, buf, sizeof(buf)); int len = read(fifo_fd, buf, sizeof(buf));
if(len<0) if (len < 0) {
{
mylog(log_warn, "fifo read failed len=%d,errno=%s\n", len, get_sock_error()); mylog(log_warn, "fifo read failed len=%d,errno=%s\n", len, get_sock_error());
return; return;
} }
@ -208,8 +188,7 @@ static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents)
handle_command(buf); handle_command(buf);
} }
static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
// uint64_t value; // uint64_t value;
@ -219,18 +198,15 @@ static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int
// do nothing // do nothing
} }
static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
conn_info_t &conn_info = *((conn_info_t *)watcher->data); conn_info_t &conn_info = *((conn_info_t *)watcher->data);
data_from_local_or_fec_timeout(conn_info, 1); data_from_local_or_fec_timeout(conn_info, 1);
} }
static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
uint64_t value; uint64_t value;
@ -243,35 +219,34 @@ static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int re
conn_info.stat.report_as_client(); conn_info.stat.report_as_client();
if(debug_force_flush_fec) if (debug_force_flush_fec) {
{ int out_n;
int out_n;char **out_arr;int *out_len;my_time_t *out_delay; char **out_arr;
int *out_len;
my_time_t *out_delay;
dest_t dest; dest_t dest;
dest.type = type_fd64; dest.type = type_fd64;
dest.inner.fd64 = conn_info.remote_fd64; dest.inner.fd64 = conn_info.remote_fd64;
dest.cook = 1; dest.cook = 1;
from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay); from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay);
for(int i=0;i<out_n;i++) for (int i = 0; i < out_n; i++) {
{
delay_send(out_delay[i], dest, out_arr[i], out_len[i]); delay_send(out_delay[i], dest, out_arr[i], out_len[i]);
} }
} }
} }
static void prepare_cb(struct ev_loop *loop, struct ev_prepare *watcher, int revents) static void prepare_cb(struct ev_loop *loop, struct ev_prepare *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
delay_manager.check(); delay_manager.check();
} }
int tunnel_client_event_loop() int tunnel_client_event_loop() {
{ int i, j, k;
int i, j, k;int ret; int ret;
int yes = 1; int yes = 1;
// int epoll_fd; // int epoll_fd;
conn_info_t *conn_info_p = new conn_info_t; conn_info_t *conn_info_p = new conn_info_t;
conn_info_t &conn_info = *conn_info_p; // huge size of conn_info,do not allocate on stack conn_info_t &conn_info = *conn_info_p; // huge size of conn_info,do not allocate on stack
@ -330,7 +305,6 @@ int tunnel_client_event_loop()
ev_io_init(&remote_watcher, remote_cb, remote_fd, EV_READ); ev_io_init(&remote_watcher, remote_cb, remote_fd, EV_READ);
ev_io_start(loop, &remote_watcher); ev_io_start(loop, &remote_watcher);
// ev.events = EPOLLIN; // ev.events = EPOLLIN;
// ev.data.u64 = delay_manager.get_timer_fd(); // ev.data.u64 = delay_manager.get_timer_fd();
@ -366,15 +340,11 @@ int tunnel_client_event_loop()
// mylog(log_debug,"conn_info.timer.get_timer_fd()=%d\n",conn_info.timer.get_timer_fd()); // mylog(log_debug,"conn_info.timer.get_timer_fd()=%d\n",conn_info.timer.get_timer_fd());
struct ev_io fifo_watcher; struct ev_io fifo_watcher;
int fifo_fd = -1; int fifo_fd = -1;
if(fifo_file[0]!=0) if (fifo_file[0] != 0) {
{
fifo_fd = create_fifo(fifo_file); fifo_fd = create_fifo(fifo_file);
// ev.events = EPOLLIN; // ev.events = EPOLLIN;
// ev.data.u64 = fifo_fd; // ev.data.u64 = fifo_fd;
@ -388,7 +358,6 @@ int tunnel_client_event_loop()
ev_io_init(&fifo_watcher, fifo_cb, fifo_fd, EV_READ); ev_io_init(&fifo_watcher, fifo_cb, fifo_fd, EV_READ);
ev_io_start(loop, &fifo_watcher); ev_io_start(loop, &fifo_watcher);
} }
ev_prepare prepare_watcher; ev_prepare prepare_watcher;

View File

@ -11,10 +11,11 @@ static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int re
static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents); static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents);
static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents); static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents);
enum tmp_mode_t{is_from_remote=0,is_fec_timeout,is_conn_timer}; enum tmp_mode_t { is_from_remote = 0,
is_fec_timeout,
is_conn_timer };
void data_from_remote_or_fec_timeout_or_conn_timer(conn_info_t & conn_info,fd64_t fd64,tmp_mode_t mode) void data_from_remote_or_fec_timeout_or_conn_timer(conn_info_t &conn_info, fd64_t fd64, tmp_mode_t mode) {
{
int ret; int ret;
char data[buf_len]; char data[buf_len];
@ -23,18 +24,19 @@ void data_from_remote_or_fec_timeout_or_conn_timer(conn_info_t & conn_info,fd64_
// fd64_t fd64=events[idx].data.u64; // fd64_t fd64=events[idx].data.u64;
// mylog(log_trace,"events[idx].data.u64 >u32_t(-1),%llu\n",(u64_t)events[idx].data.u64); // mylog(log_trace,"events[idx].data.u64 >u32_t(-1),%llu\n",(u64_t)events[idx].data.u64);
// assert(fd_manager.exist_info(fd64)); // assert(fd_manager.exist_info(fd64));
// ip_port_t ip_port=fd_manager.get_info(fd64).ip_port; // ip_port_t ip_port=fd_manager.get_info(fd64).ip_port;
// conn_info_t &conn_info=conn_manager.find(ip_port); // conn_info_t &conn_info=conn_manager.find(ip_port);
address_t &addr = conn_info.addr; address_t &addr = conn_info.addr;
assert(conn_manager.exist(addr)); assert(conn_manager.exist(addr));
int &local_listen_fd = conn_info.local_listen_fd; int &local_listen_fd = conn_info.local_listen_fd;
int out_n=-2;char **out_arr;int *out_len;my_time_t *out_delay; int out_n = -2;
char **out_arr;
int *out_len;
my_time_t *out_delay;
dest_t dest; dest_t dest;
dest.inner.fd_addr.fd = local_listen_fd; dest.inner.fd_addr.fd = local_listen_fd;
@ -42,8 +44,7 @@ void data_from_remote_or_fec_timeout_or_conn_timer(conn_info_t & conn_info,fd64_
dest.type = type_fd_addr; dest.type = type_fd_addr;
dest.cook = 1; dest.cook = 1;
if(mode==is_fec_timeout) if (mode == is_fec_timeout) {
{
assert(fd64 == 0); assert(fd64 == 0);
// uint64_t value; // uint64_t value;
// if((ret=read(fd_manager.to_fd(fd64), &value, 8))!=8) // if((ret=read(fd_manager.to_fd(fd64), &value, 8))!=8)
@ -58,23 +59,18 @@ void data_from_remote_or_fec_timeout_or_conn_timer(conn_info_t & conn_info,fd64_
// } // }
// assert(value==1); // assert(value==1);
from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay); from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay);
} } else if (mode == is_conn_timer) {
else if(mode==is_conn_timer)
{
assert(fd64 == 0); assert(fd64 == 0);
// uint64_t value; // uint64_t value;
// read(conn_info.timer.get_timer_fd(), &value, 8); // read(conn_info.timer.get_timer_fd(), &value, 8);
conn_info.conv_manager.s.clear_inactive(); conn_info.conv_manager.s.clear_inactive();
if(debug_force_flush_fec) if (debug_force_flush_fec) {
{
from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay); from_normal_to_fec(conn_info, 0, 0, out_n, out_arr, out_len, out_delay);
} }
conn_info.stat.report_as_server(addr); conn_info.stat.report_as_server(addr);
return; return;
} } else if (mode == is_from_remote) {
else if(mode==is_from_remote)
{
if (!fd_manager.exist(fd64)) // fd64 has been closed if (!fd_manager.exist(fd64)) // fd64 has been closed
{ {
mylog(log_warn, "!fd_manager.exist(fd64)\n"); mylog(log_warn, "!fd_manager.exist(fd64)\n");
@ -91,23 +87,20 @@ void data_from_remote_or_fec_timeout_or_conn_timer(conn_info_t & conn_info,fd64_
int fd = fd_manager.to_fd(fd64); int fd = fd_manager.to_fd(fd64);
data_len = recv(fd, data, max_data_len + 1, 0); data_len = recv(fd, data, max_data_len + 1, 0);
if(data_len==max_data_len+1) if (data_len == max_data_len + 1) {
{
mylog(log_warn, "huge packet from upper level, data_len > %d, packet truncated, dropped\n", max_data_len); mylog(log_warn, "huge packet from upper level, data_len > %d, packet truncated, dropped\n", max_data_len);
return; return;
} }
mylog(log_trace, "received a packet from udp_fd,len:%d,conv=%d\n", data_len, conv); mylog(log_trace, "received a packet from udp_fd,len:%d,conv=%d\n", data_len, conv);
if(data_len<0) if (data_len < 0) {
{
mylog(log_debug, "udp fd,recv_len<0 continue,%s\n", get_sock_error()); mylog(log_debug, "udp fd,recv_len<0 continue,%s\n", get_sock_error());
return; return;
} }
if(!disable_mtu_warn&&data_len>=mtu_warn) if (!disable_mtu_warn && data_len >= mtu_warn) {
{
mylog(log_warn, "huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn); mylog(log_warn, "huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn);
} }
@ -116,21 +109,17 @@ void data_from_remote_or_fec_timeout_or_conn_timer(conn_info_t & conn_info,fd64_
put_conv(conv, data, data_len, new_data, new_len); put_conv(conv, data, data_len, new_data, new_len);
from_normal_to_fec(conn_info, new_data, new_len, out_n, out_arr, out_len, out_delay); from_normal_to_fec(conn_info, new_data, new_len, out_n, out_arr, out_len, out_delay);
} } else {
else
{
assert(0 == 1); assert(0 == 1);
} }
mylog(log_trace, "out_n=%d\n", out_n); mylog(log_trace, "out_n=%d\n", out_n);
for(int i=0;i<out_n;i++) for (int i = 0; i < out_n; i++) {
{
delay_send(out_delay[i], dest, out_arr[i], out_len[i]); delay_send(out_delay[i], dest, out_arr[i], out_len[i]);
} }
} }
static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
int local_listen_fd = watcher->fd; int local_listen_fd = watcher->fd;
@ -147,8 +136,7 @@ static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int rev
return; return;
}; };
if(data_len==max_data_len+1) if (data_len == max_data_len + 1) {
{
mylog(log_warn, "huge packet, data_len > %d, packet truncated, dropped\n", max_data_len); mylog(log_warn, "huge packet, data_len > %d, packet truncated, dropped\n", max_data_len);
return; return;
} }
@ -163,19 +151,13 @@ static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int rev
mylog(log_warn, "huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn); mylog(log_warn, "huge packet,data len=%d (>=%d).strongly suggested to set a smaller mtu at upper level,to get rid of this warn\n ", data_len, mtu_warn);
} }
if (de_cook(data, data_len) != 0) {
if(de_cook(data,data_len)!=0)
{
mylog(log_debug, "de_cook error"); mylog(log_debug, "de_cook error");
return; return;
} }
if (!conn_manager.exist(addr)) {
if (conn_manager.mp.size() >= max_conn_num) {
if(!conn_manager.exist(addr))
{
if(conn_manager.mp.size() >=max_conn_num)
{
mylog(log_warn, "new connection %s ignored bc max_conn_num exceed\n", addr.get_str()); mylog(log_warn, "new connection %s ignored bc max_conn_num exceed\n", addr.get_str());
return; return;
} }
@ -207,38 +189,32 @@ static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int rev
// u64_t timer_fd64=conn_info.timer.get_timer_fd64(); // u64_t timer_fd64=conn_info.timer.get_timer_fd64();
// fd_manager.get_info(timer_fd64).ip_port=ip_port; // fd_manager.get_info(timer_fd64).ip_port=ip_port;
conn_info.fec_encode_manager.set_data(&conn_info); conn_info.fec_encode_manager.set_data(&conn_info);
conn_info.fec_encode_manager.set_loop_and_cb(loop, fec_encode_cb); conn_info.fec_encode_manager.set_loop_and_cb(loop, fec_encode_cb);
mylog(log_info, "new connection from %s\n", addr.get_str()); mylog(log_info, "new connection from %s\n", addr.get_str());
} }
conn_info_t &conn_info = conn_manager.find_insert(addr); conn_info_t &conn_info = conn_manager.find_insert(addr);
conn_info.update_active_time(); conn_info.update_active_time();
int out_n;char **out_arr;int *out_len;my_time_t *out_delay; int out_n;
char **out_arr;
int *out_len;
my_time_t *out_delay;
from_fec_to_normal(conn_info, data, data_len, out_n, out_arr, out_len, out_delay); from_fec_to_normal(conn_info, data, data_len, out_n, out_arr, out_len, out_delay);
mylog(log_trace, "out_n= %d\n", out_n); mylog(log_trace, "out_n= %d\n", out_n);
for(int i=0;i<out_n;i++) for (int i = 0; i < out_n; i++) {
{
u32_t conv; u32_t conv;
char *new_data; char *new_data;
int new_len; int new_len;
if(get_conv(conv,out_arr[i],out_len[i],new_data,new_len)!=0) if (get_conv(conv, out_arr[i], out_len[i], new_data, new_len) != 0) {
{
mylog(log_debug, "get_conv failed"); mylog(log_debug, "get_conv failed");
continue; continue;
} }
if (!conn_info.conv_manager.s.is_conv_used(conv)) {
if (!conn_info.conv_manager.s.is_conv_used(conv)) if (conn_info.conv_manager.s.get_size() >= max_conv_num) {
{
if(conn_info.conv_manager.s.get_size() >=max_conv_num)
{
mylog(log_warn, "ignored new udp connect bc max_conv_num exceed\n"); mylog(log_warn, "ignored new udp connect bc max_conv_num exceed\n");
continue; continue;
} }
@ -267,7 +243,6 @@ static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int rev
ev_io_set(&io_watcher, new_udp_fd, EV_READ); ev_io_set(&io_watcher, new_udp_fd, EV_READ);
ev_io_start(conn_info.loop, &io_watcher); ev_io_start(conn_info.loop, &io_watcher);
mylog(log_info, "[%s]new conv %x,fd %d created,fd64=%llu\n", addr.get_str(), conv, new_udp_fd, fd64); mylog(log_info, "[%s]new conv %x,fd %d created,fd64=%llu\n", addr.get_str(), conv, new_udp_fd, fd64);
} }
conn_info.conv_manager.s.update_active_time(conv); conn_info.conv_manager.s.update_active_time(conv);
@ -279,8 +254,7 @@ static void local_listen_cb(struct ev_loop *loop, struct ev_io *watcher, int rev
} }
} }
static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
conn_info_t &conn_info = *((conn_info_t *)watcher->data); conn_info_t &conn_info = *((conn_info_t *)watcher->data);
@ -289,16 +263,14 @@ static void remote_cb(struct ev_loop *loop, struct ev_io *watcher, int revents)
data_from_remote_or_fec_timeout_or_conn_timer(conn_info, fd64, is_from_remote); data_from_remote_or_fec_timeout_or_conn_timer(conn_info, fd64, is_from_remote);
} }
static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
int fifo_fd = watcher->fd; int fifo_fd = watcher->fd;
char buf[buf_len]; char buf[buf_len];
int len = read(fifo_fd, buf, sizeof(buf)); int len = read(fifo_fd, buf, sizeof(buf));
if(len<0) if (len < 0) {
{
mylog(log_warn, "fifo read failed len=%d,errno=%s\n", len, get_sock_error()); mylog(log_warn, "fifo read failed len=%d,errno=%s\n", len, get_sock_error());
return; return;
} }
@ -306,8 +278,7 @@ static void fifo_cb(struct ev_loop *loop, struct ev_io *watcher, int revents)
handle_command(buf); handle_command(buf);
} }
static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
// uint64_t value; // uint64_t value;
@ -315,11 +286,9 @@ static void delay_manager_cb(struct ev_loop *loop, struct ev_timer *watcher, int
// mylog(log_trace,"events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()\n"); // mylog(log_trace,"events[idx].data.u64 == (u64_t)delay_manager.get_timer_fd()\n");
// do nothing // do nothing
} }
static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
conn_info_t &conn_info = *((conn_info_t *)watcher->data); conn_info_t &conn_info = *((conn_info_t *)watcher->data);
@ -327,8 +296,7 @@ static void fec_encode_cb(struct ev_loop *loop, struct ev_timer *watcher, int re
data_from_remote_or_fec_timeout_or_conn_timer(conn_info, 0, is_fec_timeout); data_from_remote_or_fec_timeout_or_conn_timer(conn_info, 0, is_fec_timeout);
} }
static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
conn_info_t &conn_info = *((conn_info_t *)watcher->data); conn_info_t &conn_info = *((conn_info_t *)watcher->data);
@ -336,15 +304,13 @@ static void conn_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int re
data_from_remote_or_fec_timeout_or_conn_timer(conn_info, 0, is_conn_timer); data_from_remote_or_fec_timeout_or_conn_timer(conn_info, 0, is_conn_timer);
} }
static void prepare_cb(struct ev_loop *loop, struct ev_prepare *watcher, int revents) static void prepare_cb(struct ev_loop *loop, struct ev_prepare *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
delay_manager.check(); delay_manager.check();
} }
static void global_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) static void global_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int revents) {
{
assert(!(revents & EV_ERROR)); assert(!(revents & EV_ERROR));
// uint64_t value; // uint64_t value;
@ -353,10 +319,9 @@ static void global_timer_cb(struct ev_loop *loop, struct ev_timer *watcher, int
mylog(log_trace, "events[idx].data.u64==(u64_t)timer.get_timer_fd()\n"); mylog(log_trace, "events[idx].data.u64==(u64_t)timer.get_timer_fd()\n");
} }
int tunnel_server_event_loop() int tunnel_server_event_loop() {
{ int i, j, k;
int ret;
int i, j, k;int ret;
int yes = 1; int yes = 1;
// int epoll_fd; // int epoll_fd;
// int remote_fd; // int remote_fd;
@ -417,8 +382,7 @@ int tunnel_server_event_loop()
int fifo_fd = -1; int fifo_fd = -1;
if(fifo_file[0]!=0) if (fifo_file[0] != 0) {
{
fifo_fd = create_fifo(fifo_file); fifo_fd = create_fifo(fifo_file);
// ev.events = EPOLLIN; // ev.events = EPOLLIN;
// ev.data.u64 = fifo_fd; // ev.data.u64 = fifo_fd;
@ -438,7 +402,6 @@ int tunnel_server_event_loop()
ev_init(&prepare_watcher, prepare_cb); ev_init(&prepare_watcher, prepare_cb);
ev_prepare_start(loop, &prepare_watcher); ev_prepare_start(loop, &prepare_watcher);
ev_run(loop, 0); ev_run(loop, 0);
mylog(log_warn, "ev_run returned\n"); mylog(log_warn, "ev_run returned\n");
@ -497,7 +460,5 @@ int tunnel_server_event_loop()
}*/ }*/
return 0; return 0;
} }